Lugaru’se

eRsllon

rogrammer’s editor
>

Epsilon Programmer’s Editor
User’s Manual and Reference

Version 13.16 - Reference Edition

This is revision 13.16a of the manual.
It describes version 13.16 of Epsilon and EEL.

Copyright © 1984, 2018 by Lugaru Software Ltd.
All rights reserved.

Lugaru Software Ltd.
1645 Shady Avenue
Pittsburgh, PA 15217

TEL: (412) 421-5911
E-mail: support@lugaru.com or sales@lugaru.com

ii

LIMITED WARRANTY

THERE ARE NO WARRANTIES, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO
WARRANTIES OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE FOR EITHER THE
INSTRUCTION MANUAL, OR FOR THE EPSILON PROGRAMMER'’S EDITOR AND THE EEL SOFTWARE
(COLLECTIVELY, THE “SOFTWARE”).

Lugaru warrants the medium on which the Software is furnished to be free from defects in material under normal
use for ninety (90) days from the original date of purchase, provided that the limited warranty has been registered by
mailing in the registration form accompanying the Software.

LIMITED LIABILITY AND RETURN POLICY

Lugaru will be liable only for the replacement of defective media, as warranted above, which are returned shipping
prepaid to Lugaru within the warranty period. Because Lugaru cannot anticipate the intended use to which its Software
may be applied, it does not warrant the performance of the Software. LUGARU WILL NOT BE LIABLE FOR ANY
SPECIAL, INDIRECT, CONSEQUENTIAL OR OTHER DAMAGES WHATSOEVER. However, Lugaru wants you to
be completely satisfied with the Software. Therefore, THE ORIGINAL PURCHASER OF THIS SOFTWARE MAY
RETURN IT UNCONDITIONALLY TO LUGARU FOR A FULL REFUND FOR ANY REASON WITHIN SIXTY
DAYS OF PURCHASE, PROVIDED THAT THE PRODUCT WAS PURCHASED DIRECTLY FROM LUGARU
SOFTWARE LTD.

COPYRIGHT NOTICE

Copyright © 1984, 2018 by Lugaru Software Ltd. All rights reserved.

Lugaru Software Ltd. recognizes that users of Epsilon may wish to alter the EEL implementations of various editor
commands and circulate their changes to other users of Epsilon. Limited permission is hereby granted to reproduce and
modify the EEL source code to the commands provided that the resulting code is used only in conjunction with Lugaru
products and that this notice is retained in any such reproduction or modification.

TRADEMARKS

“Lugaru” and “EEL” are trademarks of Lugaru Software, Ltd. “Epsilon” is a registered trademark of Epsilon Data
Management, Inc. Lugaru Software Ltd. is licensed by Epsilon Data Management, Inc. to use the “Epsilon” mark in
connection with computer programming software. There is no other affiliation or association between Epsilon Data
Management, Inc. and Lugaru Software Ltd. “Brief” is a registered trademark of Borland International.

SUBMISSIONS

Lugaru Software Ltd. encourages the submission of comments and suggestions concerning its products. All
suggestions will be given serious technical consideration. By submitting material to Lugaru, you are granting Lugaru the
right, at its own discretion and without liability to you, to make any use of the material it deems appropriate.

iii
Note to Our Users

Individual copies of Epsilon aren’t protected with a formal license agreement, but by copyright law. In
addition to the copying for backup permitted under copyright law, Lugaru grants you, the end-user, certain
other rights, as explained on this page.

It describes the rules for installing a single purchased copy of Epsilon on multiple computers, and
related matters. These rules apply to all copies of Epsilon purchased by an end-user and not subject to a
written license agreement.

Each copy of Epsilon includes packages for various operating systems or distributions, such as a
Windows package, a Debian Linux package, and a Macintosh package.

You may install a single purchased copy of Epsilon on up to four computers under your control, either
installing the same package on each, or a different package on each, or any combination, as long as you’re
the only one using any of these packages. Two individuals may not share a single copy of Epsilon if there is
any chance both individuals might use that copy of Epsilon at the same time, even by using separate
packages on separate computers.

You may not split a single purchased copy of Epsilon into its separate packages and sell them separately.

If you purchase an update to Epsilon, it becomes part of the same copy. You may not (for example) buy
Epsilon 10, update to Epsilon 11, and then sell Epsilon 10 while retaining Epsilon 11. The update does not
count as a separate copy and must accompany the original version if sold.

We hope that you will respect our efforts, and the law, and not allow illegal copying of Epsilon.

We wish to thank all of our users who have made Epsilon successful, and extend our welcome to all
New users.
Steven Doerfler
Lugaru Software, Ltd.

We produced this manual using the Epsilon Programmer’s Editor and the TgX typesetting system.
Duane Bibby did the illustrations.

v

Contents

Welcome
1.1 Introduction
1.2 Features o . . e e e
Getting Started
2.1 [Installing Epsilon for Windows L
2.2 Imstalling Epsilon for Unix
2.3 Installing Epsilon forMac OS X
2.3.1 Using Epsilonunder Mac OS X
2.4 Installing Epsilon for DOS Lo
2.5 Imstalling Epsilon for OS/2
2.6 Tutorial e e
2.7 Invoking Epsilon
2.8 Configuration Variables: The Environment and The Registry
2.8.1 HowEpsilonFindsitsFiles, .
2.8.2 The Customization Directory
2.9 Epsilon Command Line Flags
2.10 FileInventory o e
General Concepts
3.1 Buffers o e e
32 WIndows
3.3 Epsilon’s Screen Layout
3.4 Different Keys for Different Uses: Modes
3.5 Keystrokes and Commands: Bindings Lo
3.6 Repeating: Numeric Arguments e
37 Viewing Lists L . e e
3.8 Typing Less: Completion & Defaults
3.9 Command History o e
3.10 Mouse SUppOrt e e
311 TheMenuBar
3.11.1 Customizing Epsilon’sMenu oo
Commands by Topic
4.1 GettingHelp. o e
4.1.1 InfoMode.
4.1.2 Web-based Epsilon Documentation
42 Moving Aroundo
4.2.1 Simple Movement Commands L.

—

O O 03 3 W L

21
21
21
21
23
24
25
25
26
28
29
30
31

vi

4.3

4.4

4.5

4.6

4.7

CONTENTS
422 MovinginLargerUnits. L 40
423 Searching 43
424 Bookmarks 47
425 Tags e 48
4.2.6 Source Code Browsing Interface 50
427 Comparing o.ou i e e e e e e e 52
Changing Text e 54
43.1 Insertingand Deleting 54
4.3.2 The Region, the Mark, and Killing 56
433 Clipboard Access 58
43.4 RectangleCommands 59
435 Capitalization e e 60
43.6 Replacing 61
4.3.7 Regular EXpressions e 63
43.8 Rearranging e 72
439 IndentingCommands L 74
4.3.10 Aligning 76
4.3.11 Automatically Generated Text 77
4.3.12 Spell Checking o o e 77
43.13 HexMode o 79
Language Modes e 80
441 AsmMode 81
442 BatchMode 81
443 CMode 81
444 ConfigurationFile Mode L 86
445 GAMSMode 86
44.6 HTML,XML,and CSSModes, 86
447 IniFileMode 88
448 MakefileMode 89
449 PerlMode. 89
44.10 PHPMode 90
4.4.11 PostScriptMode e 90
4.4.12 PythonMode e 91
4413 ShellMode e 91
44.14 TclMode 91
44.15 TeXandLaTeXModes 92
44.16 VHDLMode 93
4.4.17 Visual BasicMode 93
More Programming Features o 94
4.5.1 NavigatinginSource Code 94
452 PullingWords. 94
453 AccessingHelp 95
454 Context-Sensitive Help L 96
455 Commenting Commands L o 97
Fixing Mistakes e 98
4.6.1 Undoing e 98
4.6.2 InterruptingaCommand L 99
The Screen L 100
477.1 Display Commands 100
472 Horizontal Scrolling 101

473 WINdOWS e 102

CONTENTS vii

474 Customizingthe Screen L e 104

475 Fonts 106

47.6 Setting Colors e e 106

47777 CodeColoring i 108

47.8 Window Borders 108

479 TheBell. 109

4.8 BuffersandFiles 110
4.8.1 Buffers e 110

4.8.2 Files. 111

4.83 File Variables 120

4.8.4 Internet Support L 122

4.8.5 UnicodeFeatures 127

48.6 Printing 128

487 Extendedfilepatterns. L 128

4.8.8 Directory Editing e 130

489 BufferListEditing 133

4.9 Starting and Stopping Epsilono oL 134
49.1 SessionFiles e 134

4.9.2 File ASSociations 136

493 Sending FilestoaPriorInstance 136

494 MS-Windows Integration Features 137

4.10 Running Other Programs 139
4.10.1 The ConcurrentProcess 140

4.10.2 Compiling FromEpsilon L oo 142

4.11 RepeatingCommands L e 145
4.11.1 Repeating a Single Command 145

4.11.2 Keyboard Macros o oot o e e 145

4.12 Simple Customizing o . e e e e e e e 147
4.12.1 Bindings e 147

4.12.2 Brief Emulation. 148

4.123 CUAKeyboard oottt 150

4.12.4 Variables e e 151

4.12.5 Saving Changes to Bindings and Variables 152

4.12.6 CommandFiles 154

4.13 Advanced Topics e 158
4.13.1 Changing CommandswithEEL 158

4.13.2 Updating froman Old Version 159

4.13.3 Keys and their Representation 162

4.13.4 Customizingthe Mouse 165

4.14 Miscellaneouso e e e e e e 165

5 Alphabetical Command List 169
6 Variables 253
7 Changing Epsilon 369
8 Introduction to EEL 373
8.1 Epsilon Extension Language o 373

82 EELTutorial e 373

9 Epsilon Extension Language 379

viii CONTENTS
9.1 EEL CommandLineFlags 379
9.2 The EEL Preprocessor ittt e 380
93 LexicalRules e 383

9.3.1 Identifiers e e e 383
9.3.2 NumericConstants e e e 383
9.3.3 Character Constants i i e e e e e e 383
9.3.4 String Constants e e e e 384
9.4 Scopeof Variables 384
9.5 DataTypes o e e 385
9.5.1 Declarations e e e e 386
9.5.2 Simple Declarators 387
9.5.3 Pointer Declarators e e 387
9.5.4 ArrayDeclarators 388
9.5.5 Function Declarators e 388
9.5.6 Structure and Union Declarations 389
9.5.7 Complex Declarators 390
9.5.8 Typedefs e 391
9.59 TypeNames e 391
9.6 Initialization e e e e e e e 392
0.7 Statements e e e e e e 394
9.7.1 Expression Statement Lo e 394
972 IfStatement. e 394
9.7.3 While, Do While, and For Statements 395
9.7.4 Switch, Case, and Default Statements 395
9.7.5 Break and Continue Statements 396
9.7.6 Return Statement e e e e 396
9.7.7 Save_var and Save_spot Statements e 396
9.7.8 On_exitStatement e 397
9.7.9 Goto and Empty Statements Lo 397
9.7.10 Block e e e e e 398
9.8 CONVErSIONS v v v i e e e e e e e 398
9.9 Operator Grouping i e e e 398
9.10 Orderof Evaluation e 399
O.11 EXPIessions o v v v v it it e e e e e e 400
9.11.1 Constants and Identifiers 400
9.11.2 Unary Operators ittt it e 401
9.11.3 Simple Binary Operators i e 401
9.11.4 Assignment Operators e 403
9.11.5 Function Calls e 404
9.11.6 Miscellaneous Operators v v v v v vt i it e 404
9.12 Constant Expressions L e 405
9.13 Global Definitions e e e e e 405
9.13.1 KeyTables 406
9.13.2 ColorClasses v i v it e e e e e e e e e 406
9.13.3 Function Definitions 409
9.14 Differences Between EEL AndC 411
0.15 Syntax SUMMAry o .ot e e 412

10 Primitives and EEL Subroutines 421

10.1 Buffer Primitives e e e e e e 421

10.1.1 Changing Buffer Contents 421

CONTENTS ix

10.1.2 Moving Text Between Buffers 422
10.1.3 Getting TextfromaBuffer o 423
10.1.4 Spots o o 424
10.1.5 Narrowing e 426
10.1.6 Undo oo 426
10.1.7 Searching Primitives e 427
10.1.8 MovingbyLines L 432
10.1.9 Other Movement Functions 433
10.1.10 Sorting Primitives 434
10.1.11 Other Formatting Functions 435
10.1.12Comparing e e e e e 435
10.1.13 Managing Buffers 437
10.1.14 Catching Buffer Changes 438
10.1.15Listing Buffers L 440
10.2 Display Primitives 440
10.2.1 Creating & Destroying Windows 440
10.2.2 Window Resizing Primitives oL 442
10.2.3 Preserving Window Arrangementso 442
10.2.4 Pop-up Windows L 444
10.2.5 Pop-up Window Subroutines 445
10.2.6 Window Attributes e e 446
10.2.7 Buffer Textin Windows e 447
10.2.8 Window Titlesand Mode Lines 449
10.2.9 Normal BufferDisplay 452
10.2.10 Displaying Status MesSages v i ittt e e e 458
10.2.11 Printf-style Format Strings o 461
10.2.12 Other Display Primitives L 462
10.2.13 Highlighted Regions 463
10.2.14 Character Coloring o o i e 467
10.2.15Code Coloring Internals 469
10.2.16C0lors L 472
10.3 File Primitives o o e e e e e 475
10.3.1 ReadingFiles 475
1032 Writing Fileso 477
10.3.3 Line Translation e 479
10.3.4 Character Encoding Conversions e 480
10.3.5 More File Primitives L 482
10.3.6 File Properties 485
10.3.7 Low-level File Primitives 487
10.3.8 Directories o e e e e e 488
10.3.9 Manipulating File Names 490
10.3.10 Internet Primitives L 494
10.3.11 Tagging Internals e 499
10.4 Operating System Primitives L 499
10.4.1 System Primitives L. 499
10.4.2 Window System Primitives oL 503
1043 Timing o oo e e e 507
10.4.4 Calling DLLs (WindowsOnly) 508
10.4.5 RunningaProcess 509
10.5 Control Primitives e 514

10.5.1 Control Flow e 514

10.5.2 Character Types« it
10.5.3 Examining Strings
10.5.4 Modifying Strings L.
10.5.5 Byte Arrays
10.5.6 Memory Allocation
10.5.7 TheNameTable
10.5.8 Built-inand User Variables

10.5.9 Buffer-specific and Window-specific Variables

10.5.10Bytecode Files
10.5.11 Starting and Finishing
10.5.12 EEL Debugging and Profiling
10.5.13 Help Subroutines,
10.6 InputPrimitives
10.6.1 Keys
10.6.2 TheMouse
10.6.3 WindowEvents L.,
10.6.4 Completion L
10.6.5 Other Input Functions
10.6.6 Dialogs
10.6.7 TheMainLoop
10.6.8 Bindings
10.7 Defining Language Modes
10.7.1 Language-specific Subroutines

11 Error Messages

A Index

CONTENTS

CONTENTS

X1

Chapter 1

Welcome

1.1

Introduction

Welcome! We hope you enjoy using Epsilon. We think you’ll find that Epsilon provides power and
flexibility unmatched by any other editor for a personal computer.

Epsilon has a command set and general philosophy similar to the EMACS-style editors used on many

different kinds of computers. If you’ve used an EMACS-style editor before, you will find Epsilon’s most
commonly used commands and keys familiar. If you haven’t used an EMACS-style editor before, you can
use Epsilon’s tutorial program. Chapter 2 tells you how to install Epsilon and how to use the tutorial
program.

1.2

Features

Full screen editing with an EMACS-style command set.

An exceptionally powerful embedded programming language, called EEL, that lets you customize or
extend the editor. EEL provides most of the expressive power of the C programming language.

You can invoke your compiler or “make” program from within Epsilon, then have Epsilon scan the
output for error messages, then position you at the offending line in your source file. See page 142.

An undo command that lets you “take back” your last command, or take back a sequence of
commands. The undo facility works on both simple and complicated commands. Epsilon has a redo
command as well, so you can even undo your undo’s. See page 98.

Very fast redisplay. We designed Epsilon specifically for the personal computer, so it takes advantage
of the high available display bandwidth.

Epsilon can dynamically syntax-highlight source code files written in many different languages,
showing keywords in one color, functions in another, string constants in a third, and so forth.

Epsilon can finish typing long identifier names for you.

You can interactively rearrange the keyboard to suit your preferences, and save the layout so that
Epsilon uses it the next time. Epsilon can also emulate the Brief text editor’s commands, or use a
CUA-style keyboard (like various Windows programs).

You can edit a virtually unlimited number of files simultaneously.

Epsilon understands Internet URLs and can asynchronously retrieve and send files via FTP. It also
includes support for Telnet, SSH, SCP, and various other protocols.

Epsilon provides a multi-windowed editing environment, so you can view several files simultaneously.
You can use as many windows as will fit on the display. See page 102.

Under Windows, Epsilon provides a customizable tool bar.
The ability to run other programs from within Epsilon in various ways. See page 139.

The ability to run some classes of programs concurrently with the output going to a window. Details
begin on page 140.

An extensive on-line help system. You can get help on what any command does, what any key does,
and on what the command executing at the moment does. And Epsilon’s help system will
automatically know about any rearrangement you make to the keyboard. See page 35.

Chapter 1. Welcome

An extensible “tags” system for many programming languages that remembers the locations of
subroutine and variable definitions. You provide a subroutine name, for instance, and Epsilon takes
you to the place that defines that subroutine. Alternatively, you can position the cursor on a function
call, hit a key, and jump right to the definition of that function. See page 48.

Completion on file names and command names. Epsilon will help you type the names of files and
commands, and display lists of names that match a pattern that you specify. You can complete on
many other classes of names too. This saves you a lot of typing. See page 26.

Support for Unicode files and files using a variety of other character sets.

Under Windows, you can drag and drop files or directories onto Epsilon’s window, and Epsilon will
open them.

Commands to manipulate words, sentences, paragraphs, and parenthetic expressions. See the
commands starting on page 40.

Indenting and formatting commands. Details start on page 73.

A Kkill ring to store text you’ve previously deleted. You can set the number of such items to save. See
page 56.

A convenient incremental search command (described on page 43), as well as regular searching
commands, and search-and-replace commands.

Regular expression searches. With regular expressions you can search for complex patterns, using
such things as wildcards, character classes, alternation, and repeating. You can even search based on
syntax highlighting, finding only matches in a programming language comment or string, or using
Unicode property names.

A fast grep command that lets you search across a set of files. See page 46. You can also replace text
in a set of files.

Extended file patterns that let you easily search out files on a disk.

A directory editing command that lets you navigate among directories, copying, moving, and deleting
files as needed. It even works on remote directories via FTP or SCP.

Fast sort commands that let you quickly sort a buffer. See page 72.

A powerful keyboard macro facility (see page 145), that allows you to execute sequences of
keystrokes as a unit, and to extend the command set of the editor. You’ll find Epsilon’s keyboard
macros very easy to define and use.

Commands to compare two files and find the differences between them. You can compare
character-by-character or line-by-line, displaying results in a variety of formats. See page 52.

You can choose from a variety of built-in screen layouts, making Epsilon’s screen look like those of
other editors, or customize your own look for the editor.

1.2. Features

Chapter 2

Getting Started

This chapter tells you how to install Epsilon on your system and explains how to invoke Epsilon. We also
describe how to run the tutorial, and list the files in an Epsilon distribution.

2.1 Installing Epsilon for Windows

Epsilon for Windows is provided as a self-installing Windows executable. Run the program
r:\setup.exe

where r represents your CD-ROM drive.

The installation program installs the GUI version of Epsilon for Windows, and the Win32 console
version. We named the Windows GUI version epsilon.exe and the console version epsilonc.exe.

The installation program creates program items to run Epsilon. You can recreate them, set up file
associations, change the registration information shown in Epsilon’s About box, and do similar
reconfiguration tasks by running Epsilon’s configure-epsilon command.

The installer also sets the registry entry Software\Lugaru\Epsilon\EpsPathversion in the
HKEY_CURRENT_USER hierarchy to include the name of the directory in which you installed Epsilon (where
version represents Epsilon’s version number).

Under Windows 95/98/ME, the installation program directs the system to install Epsilon’s VxD each
time it starts, by creating the registry entry
System)\ CurrentControlSet\ Services\ VxD\ Epsilonversion\StaticVxD in the HKEY_LOCAL_MACHINE
hierarchy. If you’re running Windows 95/98/ME, the program will warn that you must restart Windows
before the concurrent process will work.

You can uninstall Epsilon by using the “Programs and Features” Control Panel (called “Add/Remove
Programs” prior to Windows Vista).

2.2 Installing Epsilon for Unix

Epsilon includes a version for Linux and a separate version for FreeBSD. We describe them collectively as
the “Unix” version of Epsilon. To install either one, mount the CD-ROM, typically by typing

mount -o exec /cdrom
or for FreeBSD and some Linux systems
mount /cdrom
Then, as root, run the appropriate shell script. For Linux, use
/cdrom/linux/einstall
and for FreeBSD use
/cdrom/freebsd/einstall

The installation script will prompt you for any necessary information.

If for some reason that doesn’t work, you can manually perform the few steps needed to install Epsilon.
For Epsilon for Linux, you would type, as root:

6 Chapter 2. Getting Started

cd /usr/local

tar xjf /cdrom/linux/epsilonl3.16.tar.bz2
cd epsilonl3.16

./esetup

For FreeBSD, substitute freebsd for 1inux in the second command.

You can also install Epsilon in a private directory, if you don’t have root access. If you do this on some
systems, you might have to define an environment variable to ensure Epsilon can locate its files, such as

EPSPATH1316="/.epsilon:/home/bob/epsilonl3.16

If needed, the esetup command will display an appropriate environment variable definition.

Some versions of Epsilon use a helper program to access certain shared library files from the glibc 2.1
NSS subsystem. If necessary, the installation script will compile a helper program to provide Epsilon with
these services.

Epsilon runs as an X11 program when run under the X11 windowing system, and as a text program
outside of X. Epsilon knows to use X when it inherits a DISPLAY environment variable. You can override
Epsilon’s determination by providing a -vt flag to make Epsilon run as a text program, or an appropriate
-display flag to make Epsilon connect to a given X server. On platforms where Epsilon uses shared libraries,
you can run the program terminal-epsiloninstead of epsilon; it will run as a text program even where
X11 shared libraries are not installed.

Epsilon also recognizes these standard X11 flags:

-bw pixels or -borderwidth pixels This flag sets the width of the window border in pixels. An
Epsilon.borderWidthresource may be used instead.

-display disp This flag makes Epsilon use disp as the display instead of the one indicated by the DISPLAY
environment variable. It follows the standard X11 syntax.

-fn font or —font font This flag specifies the font to use. The Alt-x set-font command can select a different
font from within Epsilon. Epsilon will remember any font you select with set-font and use it in future
sessions; this flag overrides any remembered font.

—-geometry geometry This flag sets the window size and position, using the standard X11 syntax. Without
this flag, Epsilon looks for an Epsilon. geometry resource.

-name resname This flag tells Epsilon to look for X11 resources using a name other than “Epsilon”.

~title ritle This flag sets the title Epsilon displays while starting. An Epsilon.title resource may be used
instead.

-xrm resourcestring This flag specifies a specific resource name and value, overriding any defaults.

Epsilon uses various X11 resources. You can set them from the command line with a flag like -xrm
Epsilon.cursorstyle:1or puta line like Epsilon. cursorstyle:1in your X resources file, which is
usually named ~/.Xresourcesor ~/.Xdefaults:

Epsilon.cursorstyle: 1

You’ll need to tell X to reread the file after making such a change, using a command like xrdb -merge
~/ .Xresources.

Epsilon uses these X resources:

2.3. Installing Epsilon for Mac OS X 7

Epsilon.borderWidth This sets the width of the border around Epsilon’s window.

Epsilon.cursorstyle Under X11, Epsilon displays a block cursor whose shape does not change. Define a
cursorstyle resource with value 1 and Epsilon will use a line-style cursor, sized to reflect overwrite
mode or virtual space mode. Note this cursor style does not display correctly on some older X11
servers.

Epsilon.font This resource sets Epsilon’s font. It must be a fixed-width font. If you set a font from within
Epsilon, it remembers your selection in a file /. epsilon/Xresources and uses it in future
sessions. Epsilon uses this resource if there’s no font setting in that file.

Epsilon.geometry This resource provides a geometry setting for Epsilon. See the —geometry flag above.

Epsilon.title This resource sets the title Epsilon displays while starting.

2.3 Installing Epsilon for Mac OS X

Epsilon for Mac OS X supports drag and drop installation. Simply open the disk image in the “macos”
folder on the CD-ROM and drag the Epsilon application inside to your Applications folder. Epsilon supports
Mac OS X version 10.4 and later on Intel-based Macs. A legacy package in the “powerpc” folder supports
old PowerPC-based Macs running OS X 10.3.9 through 10.6.8.

Epsilon includes a setup script, and there are some advantages to running it, though it’s optional. The
setup script will install Epsilon and its EEL compiler on your path, so you can run them from the command
line more conveniently. And it will link Epsilon’s Info documentation into the main Info tree, so other
Info-reading programs can locate it. To run Epsilon’s setup script from a shell prompt, type

sudo "/Applications/Epsilon.app/Contents/esetup"

assuming /Applications is where you installed Epsilon.

Epsilon for Mac OS X can run as an X11 program or as a curses-based console program. Normally it
automatically chooses the best way: as an X11 program if there’s a DISPLAY environment variable or if
X11 is installed, otherwise as a console program. OS X versions through 10.7 (Lion) come with X11
preinstalled (or available on your installation disk as an optional extra), but starting in 10.8 (Mountain Lion),
the XQuartz program must be installed from http://xquartz.macosforge.org/ for X11 support. This is highly
recommended, since Epsilon for OS X works best as an X11 program.

Any time Epsilon documentation mentions the “Unix version” of Epsilon, this also includes the Mac
OS X version. In particular, Epsilon for Mac OS X recognizes all the X11 flags described in the previous
section, and all the X11 resource names documented there.

2.3.1 Using Epsilon under Mac OS X

When you run Epsilon for Mac OS X as an application bundle, the Finder runs a shell script named
Mac0S/start-epsilon within the bundle. This script picks the best method to invoke Epsilon. If there’s a
DISPLAY environment variable, indicating X11 is already running, it simply executes bin/epsilon.
Otherwise, if X11 is installed, it uses X11’s open-x11 program to start X11 and run bin/epsilon within it.
Finally, if X11 is not installed, it runs the bin/terminal-epsilon program, which can run without X11.

If you want to create a link to Epsilon in a common bin directory for executables and retain this
behavior, create a symbolic link to its Mac0S/start-epsilon script.

When the Mac0S/start-epsilon shell script uses open-x11 to run Epsilon, the Epsilon process
created may or may not be a child of Mac0S/start-epsilon. So passing special ulimit or environment

8 Chapter 2. Getting Started

variable settings to it can’t be done by simply wrapping this script in another. The Mac0S/start-epsilon
script sources a script file named ~/.epsilon/start-epsilon.rc,if it exists, which can set up any
special environment or ulimit setting you want, and loads any resources defined in your ~/.Xresources
file.

When Epsilon runs under Mac OS X, certain keyboard issues arise. This section explains how to
resolve them.

e Mac OS X normally reserves the function keys F9 through F12 for its own use. Epsilon also uses
these keys for various functions. You can set Mac OS X to use different keys for these four functions,
system-wide, but the simplest approach is to use alternative keys in Epsilon.

For the undo and redo commands on F9 and F10, the undo-changes and redo-changes commands on
Ctrl-F9 and Ctrl-F10 make fine replacements. Or you can run undo and redo using their alternative
key bindings Ctrl-X u and Ctrl-X r, respectively.

For the previous-buffer and next-buffer commands on F11 and F12, you can use their alternative key
bindings, Ctrl-X < and Ctrl-X >, respectively.

* Under X11, Epsilon uses the Command key as its Alt modifier key. X11’s Preferences should be set
so the “Enable key equivalents under X11” option is disabled (called “Enable Keyboard Shortcuts” in
older X11 versions); otherwise the X11 system will reserve for itself many key combinations that use
the Command key. Alternatively, you can substitute multi-key sequences like Escape f for the key
combination Alt-f. See the alt-prefix command.

* When Epsilon for Mac OS X runs as a console program because X11 is not installed, it uses the
TERM environment variable and the terminfo database of terminal characteristics. If you run Epsilon
under a terminal program like Terminal and the TERM setting doesn’t match the terminal program’s
actual behavior, some things won’t work right. As of Mac OS X version 10.4, it appears that no
setting for TERM exactly matches Terminal’s default behavior, but the “xterm-color” setting comes
closest. Select this option from Terminal’s Preferences.

With the xterm-color setting, function keys F1-F4 may not work right; the commands on these keys
almost all have alternative bindings you can use instead: For F1 (the help command), use the key
labeled “Help” on Mac keyboards that have one, or type Alt-? or Ctrl-_. For F2 (the named-command
command), use the Alt-x key combination instead. For F3 (the pull-word command), use the Ctrl-(Up)
key. For F4 (the bind-to-key command), type Alt-x bind-to-key. Or you can change Terminal’s settings
for these keys, or the terminfo database, so they match. But the best way to avoid these issues entirely
is to install X11 so Epsilon can run as an X11 program, as above.

2.4 Installing Epsilon for DOS

An older version of Epsilon for DOS is also provided on the CD-ROM, for users who must use DOS.

The Win32 console version, described previously, and the DOS version have a similar appearance, and
both will run in Windows, but of the two, only the Win32 console version can use long file names or the
clipboard in all 32-bit versions of Windows. The DOS version also lacks a number of other features in the
Win32 console version. If you wish to run Epsilon from a command line prompt (a DOS box) within any
32-bit version of Windows, use the Win32 console version, not the DOS version, for the best performance
and feature set.

To install Epsilon for DOS, cd to the \DOS directory on the Epsilon CD-ROM. Run Epsilon’s
installation program by typing:

install

2.5. Installing Epsilon for OS/2 9

Follow the directions on the screen to install Epsilon. The installation program will ask before it
modifies or replaces any system files. The DOS executable is named epsdos.exe. A list of files provided
with Epsilon starts on page 17.

2.5 |Installing Epsilon for 0S/2

An older version of Epsilon for OS/2 is also provided on the CD-ROM. To install Epsilon for OS/2, start a
command prompt and cd to the \0S2 directory on the Epsilon CD-ROM. Run Epsilon’s installation program

by typing:
install
Follow the directions on the screen to install Epsilon. The installation program will ask before it

modifies or replaces any system files. The OS/2 executable is named epsilon.exe. A list of files provided
with Epsilon starts on page 17.

2.6 Tutorial

Once you install Epsilon, put the distribution medium away. If you’ve never used Epsilon or EMACS
before, you should run the tutorial to become acquainted with some of Epsilon’s simpler commands.

The easiest way to run the tutorial is to start Epsilon and select Epsilon Tutorial from the Help menu. (If
you’re running a version of Epsilon without a menu bar, you can instead press the F2 key in Epsilon and
type the command name tutorial. Or you can start Epsilon with the -teach flag.)

The tutorial will tell you everything else you need to know to use the tutorial, including how to exit the
tutorial.

2.7 Invoking Epsilon

You can start Epsilon for Windows using the icon created by the installer. Under other operating systems,
you can run Epsilon by simply typing “epsilon”.

Depending on your installation options, you can also run Epsilon for Windows from the command line.
Under Windows, type “epsilon” to run the more graphical version of Epsilon, or “epsilonc” to run the Win32
console version of Epsilon. “Epsdos” runs the DOS version, if one is installed.

The first time you run Epsilon, you will get a single window containing an empty document. You can
give Epsilon the name of a file to edit on the command line. For example, if you type

epsilon sample.c

then Epsilon will start up and read in the file sample. c. If the file name contains spaces, surround the entire
name with double-quote characters.

epsilon "a sample file.c"

When you name several files on the command line, Epsilon reads each one in, but puts only up to three
in windows (so as not to clutter the screen with tiny windows). You can set this number by modifying the
max-initial-windows variable.

If you specify files on the command line with wild cards, Epsilon will show you a list of the files that
match the pattern in dired mode. See page 130 for more information on how dired works. File names that
contain only extended wildcard characters like , ; [or], and no standard wildcard characters like * or ?, will

10 Chapter 2. Getting Started

be interpreted as file names, not file patterns. (If you set the variable expand-wildcardsto 1, Epsilon will
instead read in each file that matches the pattern, as if you had listed them explicitly. Epsilon for Unix does
this too unless you quote the file pattern.)

Epsilon normally shows you the beginning of each file you name on the command line. If you want to
start at a different line, put “+number” before the file’s name, where number indicates the line number to go
to. You can follow the line number with a : column number too. For example, if you typed

epsilon +26 file.one +144:20 file.two

then you would get file.one with the cursor at the start of line 26, and file.two with the cursor at line 144,
column 20. You can instead specify a character offset using the syntax “+pnumber” to go to character offset
number in the buffer.

Windows users running the Cygwin environment may wish to configure Epsilon to accept Cygwin-style
file names on the command line. See the cygwin-filenames variable for details.

By default, Epsilon will also read any files you were editing in your previous editing session, in addition
to those you name on the command line. See page 134 for details.

If you’re running an evaluation version of Epsilon or a beta test version, you may receive a warning
message at startup indicating that soon your copy of Epsilon will expire. You can disable or delay this
warning message (though not the expiration itself). Create a file named no-expiration-warningin
Epsilon’s main directory. Put in it the maximum number of days warning you want before expiration.

2.8 Configuration Variables: The Environment and The Registry

Epsilon for Unix uses several environment variables to set options and say where to look for files. Epsilon
for Windows stores such settings in the System Registry, under the key
HKEY_CURRENT_USER\SOFTWARE\Lugaru\Epsilon. Epsilon’s setup program will generally create all
necessary registry keys automatically.

We use the term configuration variable to refer to any setting that appears as an environment variable
under Unix, or a registry entry under Windows. There are a small number of settings that are stored in
environment variables on all platforms; these are generally settings that are provided by the operating
system. These include COMSPEC, TMP or TEMP, EPSRUNS, and MIXEDCASEDRIVES.

Under Windows, the installation program creates a registry entry similar to this:
HKEY_CURRENT_USER\SOFTWARE\Lugaru\Epsilon\EpsPath=";c:\epsilon

Of course, the actual entry, whether it’s an environment variable setting or an entry in the system
registry, would contain whatever directory Epsilon was actually installed in, not c:\epsilon.

If you have more than one version of Epsilon on your computer, you may want each to use a different
set of options. You can override many of the configuration variables listed below by using a configuration
variable whose name includes the specific version of Epsilon in use. For example, when Epsilon needs to
locate its help file, it normally uses a configuration variable named EPSPATH. Epsilon version 6.01 would
first check to see if a configuration variable named EPSPATH601 existed. If so, it would use that variable. If
not, it would then try EPSPATH60, then EPSPATHS6, and finally EPSPATH. Epsilon does the same sort of
thing with all the configuration variables it uses, with the exception of DISPLAY, EPSRUNS, TEMP, and
TMP.

Epsilon uses a similar procedure to distinguish registry entries for the Win32 console mode version
from registry entries for the Win32 GUI version of Epsilon. For the console version, it checks registry
names with an -NTCON suffix before the actual names; for the GUI version it checks for a -WIN suffix. So
Epsilon 10.2 for Win32 console would seek an EPSPATH configuration variable using the names

2.8. Configuration Variables: The Environment and The Registry 11

EPSPATH102-NTCON, EPSPATH102, EPSPATH10-NTCON, EPSPATH10, EPSPATH-NTCON, and
finally EPSPATH, using the first one it finds.

For example, the Windows installation program for Epsilon doesn’t actually add the EPSPATH entry
shown above to the system registry. It really uses an entry like

HKEY_CURRENT_USER\SOFTWARE\Lugaru\Epsilon\EpsPath80=c:\epsilon

where EpsPath80 indicates that the entry should be used by version 8.0 of Epsilon, or version 8.01, or 8.02,
but not by version 8.5. In this way, multiple versions of Epsilon can be installed at once, without overwriting
each other’s settings. This can be helpful when upgrading Epsilon from one version to the next.

Here we list all the configuration variables that Epsilon can use. Remember, under Windows, most of
these names refer to entries in the registry, as described above. Under Unix, these are all environment
variables.

CMDCONCURSHELLFLAGS If defined, Epsilon puts the contents of this variable before the command
line when you use the start-process command with a numeric argument. It overrides
CMDSHELLFLAGS. See page 140.

CMDSHELLFLAGS If defined, Epsilon puts the contents of this variable before the command line when
it runs a subshell that should execute a single command and exit.

COMSPEC Epsilon for Windows needs a valid COMSPEC environment variable in order to run another
program. Normally, the operating system automatically sets up this variable to give the file name of
your command processor. If you change the variable manually, remember that the file must actually
exist. Don’t include command line options for your command processor in the COMSPEC variable. If
a configuration variable called EPSCOMSPEC exists, Epsilon will use that instead of COMSPEC.
(For Unix, see SHELL below.)

DISPLAY Epsilon for Unix tries to run as an X11 program if this environment variable is defined, using the
X server display it specifies.

EEL The EEL compiler looks for a configuration variable named EEL before examining its command line,
then “types in” the contents of that variable before the compiler’s real command line. See page 379.

EPSCOMSPEC See COMSPEC above.

EPSCONCURCOMSPEC If defined, Epsilon for Windows runs the shell command processor named by
this variable instead of the one named by the EPSCOMSPEC or COMSPEC variables, when it starts a
concurrent process. See page 140.

EPSCONCURSHELL If defined, Epsilon for Unix runs the shell command processor named by this
variable instead of the one named by the EPSSHELL or SHELL variables, when it starts a concurrent
process. See page 140.

EPSCUSTDIR Epsilon uses the directory named here as its customization directory (see page 13) instead
of the usual one (under \Users or \Documents and Settings, for Windows, or at “/.epsilon,
for Unix). The directory must already exist, or Epsilon will ignore this variable.

EPSILON Before examining the command line, Epsilon looks for a configuration variable named
EPSILON and “types in” the value of that variable to the command line before the real command line.
See page 13.

EPSMIXEDCASEDRIVES This variable can contain a list of drive letters. If the variable exists, Epsilon
doesn’t change the case of file names on the listed drives. See page 119 for details.

12 Chapter 2. Getting Started

EPSPATH Epsilon uses this configuration variable to locate its files. See page 12.

EPSRUNS When Epsilon runs another program, it sets this environment variable to indicate to the other
program that it’s running within Epsilon. A setting of C indicates the subprocess is running within
Epsilon’s concurrent process. A setting of P indicates the subprocess is running via the filter-region
command or similar. A setting of Y indicates Epsilon ran the process in some other way, such as via
the shell command.

EPSSHELL See SHELL below.
ESESSION Epsilon uses this variable as the name of its session file. See page 134.

INTERCONCURSHELLFLAGS 1If defined, Epsilon uses the contents of this variable as the command
line to the shell command processor it starts when you use the start-process command without a
numeric argument. It overrides INTERSHELLFLAGS. See page 140.

INTERSHELLFLAGS If defined, Epsilon uses the contents of this variable as a subshell command line
when it runs a subshell that should prompt for a series of commands to execute. See page 140.

MIXEDCASEDRIVES This variable can contain a list of drive letters. If the variable exists, Epsilon
doesn’t change the case of file names on the listed drives. See page 119 for details.

NOFOCUSCLICK If defined, when you click on an Epsilon window under Windows while another
program has the focus, Epsilon will get the focus but will otherwise ignore the mouse click. By
default, it treats mouse clicks the same whether or not they switch the focus to Epsilon, setting point
to the character you clicked on.

PATH The operating system uses this variable to find executable programs such as epsilon.exe. Make sure
this variable includes the directory containing Epsilon’s executable files if you want to conveniently
run Epsilon from the command line.

SHELL Epsilon for Unix needs a valid SHELL environment variable in order to run another program. If a
configuration variable called EPSSHELL exists, Epsilon will use that instead of SHELL. (See
COMSPEC above for the non-Unix equivalent.)

TEMP Epsilon puts any temporary files it creates in this directory, unless a TMP environment variable
exists. See the description of the -fs flag on page 14.

TMP Epsilon puts any temporary files it creates in this directory. See the description of the -fs flag on page
14.

2.8.1 How Epsilon Finds its Files

Sometimes Epsilon needs to locate one of its files. For example, Epsilon needs to read an .mnu file like
gui.mnu or epsilon.mnu to determine what commands go in its menu bar.

Epsilon searches for the file in each directory named by the EPSPATH configuration variable. This
configuration variable should contain a list of directories, separated by semicolons (or for Unix, colons).
Epsilon will then look for the file in each of these directories. Under Windows, a directory named ~ in an
EPSPATH variable has a special meaning. It refers to the current user’s customization directory. See the
next section.

If there is no EPSPATH configuration variable, Epsilon constructs a default one. It consists of the user’s
customization directory, then the parent of the directory containing Epsilon’s executable. For Unix, the
default EPSPATH also contains the directory /usr/local/epsilonVER (where VER indicates the current
version, such as 10.01).

2.9. Epsilon Command Line Flags 13

If the name of the directory with Epsilon’s executable doesn’t start with bin, or its parent doesn’t start
with eps (they do, in a normal installation), Epsilon uses the directory containing Epsilon’s executable, not
its parent, in the default EPSPATH.

Some flags can change the above behavior. The -w32 flag makes Epsilon look for files in the directory
containing the Epsilon executable before trying the EPSPATH. The -w8 flag keeps Epsilon from including
the executable’s directory or its parent in the default EPSPATH.

The EEL compiler also uses the EPSPATH environment variable. See page 379.

2.8.2 The Customization Directory

Epsilon searches for some files in a user-specific customization directory. It also creates files like its
initialization file einit.ecm there. (See page 154, and the edit-customizations command.)

To locate your customization directory, switch to Epsilon’s #messages# buffer. Epsilon writes the
name of its customization directory to this buffer when it starts up. Or run the edit-customizations command,
which opens the einit.ecm file located in this directory.

Under Linux, FreeBSD, and Mac OS X, the customization directory is ~/.epsilon.

Under Windows, the customization directory is located in the Lugaru\Epsilon subdirectory within the
current user’s Application Data directory, which varies by version of Windows. Here are some typical
locations:

For Windows Vista and later:
\Users\username\AppData\Roaming\Lugaru\Epsilon

For Windows 2000/XP:

\Documents and Settings\username\Application Data\Lugaru\Epsilon
For Windows NT:

\Winnt\Profiles\username\Application Data\Lugaru\Epsilon

For Windows 95/98/ME, when user login is enabled:
\Windows\Profiles\username\Application Data\Lugaru\Epsilon

For Windows 95/98/ME, when user login is disabled:

\Windows\Application Data\Lugaru\Epsilon

You can force Epsilon to use a different customization directory by defining a configuration variable
named EPSCUSTDIR. See page 10 for more on configuration variables.

2.9 Epsilon Command Line Flags

When you start Epsilon, you may specify a sequence of command line flags (also known as command-line
options, or switches) to alter Epsilon’s behavior. Flags must go before any file names.

_9

Each flag consists of a minus sign (“-”), a letter, and sometimes a parameter. You can use the special
flag -- to mark the end of the flags; anything that follows will be interpreted as a file name even if it starts
with a - like a flag.

If a parameter is required, you can include a space before it or not. If a parameter is optional (-b, -m,
-p) it must immediately follow the flag, with no space.

14 Chapter 2. Getting Started

Before examining the command line, Epsilon looks for a configuration variable (see page 10) named
EPSILON and “types in” the value of that variable to the command line before the real command line. Thus,
if you define a Unix environment variable:

export EPSILON=-m250000 -smine
then Epsilon would behave as if you had typed

epsilon -m250000 -smine myfile
when you actually type

epsilon myfile

Here we list all of the flags, and what they do:

+number Epsilon normally shows you the beginning of each file you name on the command line. If you
want to start at a different line, put “+number” before the file’s name, where number indicates the line
number to go to. You can follow the line number with a colon and a column number if you wish.

—add This flag tells Epsilon to locate an existing instance of Epsilon, pass it the rest of the command line,
and exit. Epsilon ignores the flag if there’s no prior instance. If you want to configure another
program to run Epsilon to edit a file, but use an existing instance of Epsilon if there is one, just include
this flag in the Epsilon command line. See page 136 for details on Epsilon’s server support.

-bfilename Epsilon normally reads all its commands from a state file at startup. (See the -s flag below.)
Alternately, you can have Epsilon start up from a file generated directly by the EEL compiler. These
bytecode files end with a “.b” extension. This flag says to use the bytecode file with name filename, or
“epsilon” if you leave out the filename. You may omit the extension in filename. You would rarely use
this flag, except when building a new version of Epsilon from scratch. Compare the -1 flag.

—dvariable!value You can use this flag to set the values of string and integer variables from the command
line. The indicated variable must already exist at startup. You can also use the syntax
—dvariable=value, but beware: if you run Epsilon for Windows via a .BAT or .CMD file, the system
will replace any =’s with spaces, and Epsilon will not correctly interpret the flag.

~dir dirname Epsilon interprets any file names that follow on the command line relative to this directory.

—fdfilename This flag tells Epsilon where to look for the on-line documentation file. Normally, Epsilon
looks for a file named edoc. This flag tells Epsilon to use filename for the documentation file. If you
provide a relative name for filename, then Epsilon will search for it; see page 12. Use a file name, not
a directory name, for filename.

—fsdirnames This switch tells Epsilon what directories to use for temporary files, such as Epsilon’s swap
file, which it uses when you edit files too big for available memory, or the eshell file it creates in some
environments to help capture the output of a process. Dirnames should indicate a list of one or more
directories, separated by semicolons (colons under Unix). Epsilon will use the first directory named as
long as there is space on its device; then it will switch to the second directory, and so forth. If it cannot
find any available space, it will ask you for another directory name.

If you don’t use this switch, Epsilon will create any temporary files it needs in the directory named by
the TMP environment variable. If TMP doesn’t exist, Epsilon tries TEMP, then picks a fallback
location. Epsilon calls its swap file eswap, but it will use another name (like eswap0, eswapl, etc.) to
avoid a conflict with another Epsilon using this file.

2.9. Epsilon Command Line Flags 15

-geometry When Epsilon for Unix runs as an X program, it recognizes this standard X11 flag. It specifies
the size and position of Epsilon’s window, using the format WIDTHxHEIGHT+X0FF+YOFF. The WIDTH
and HEIGHT values are in characters. The XOFF and YOFF values are in pixels, measured from the top
left corner of the screen. You can use - instead of + as the offset separator to positon relative to the
right or bottom edge of the screen instead. You may omit trailing values (for instance, just specify
width and height).

-kanumber This switch turns off certain keyboard functions to help diagnose problems. It’s followed by a
number, a bit pattern made by summing the bit values that follow.

For Windows, the value 1 tells Epsilon not to translate the Ctrl-2 key combination to Ctrl-@.
(Ctrl-Shift-2 always produces Ctrl-@.) The value 8 tells Epsilon to be more conservative when
writing text on the screen, at the price of some performance; it may help with fonts that use
inconsistent character sizes, or with display driver compatibility issues. The value 16 makes text a
little darker, and sometimes helps with display driver compatibility too.

A value of 128 tells Epsilon for Windows not to apply the Ctrl key to those ASCII characters that
have no Control version in ASCII. For instance, the ASCII code includes characters Ctrl-A and Ctrl-\,
but not Ctrl-9 or Ctrl-(. Epsilon for Windows will construct a non-ASCII key code for the latter pair
unless you use this bit. (Under X11, Epsilon always does this.)

For Unix, bits in this flag can set which X11 modifier keys indicate an Alt key. By default, Epsilon
chooses an appropriate key, but you can use 1 or 2 to force modifier key 1 or 2, respectively. The
number is a bit pattern specifying which of the five possible X11 modifier keys will be used as an Alt
key, using the values 1, 2, 4, 8, and 16. The value 32 tells Epsilon under X11 not to translate the Ctrl-2
key combination to NUL (as 1 for Windows does).

Both Windows and X11 GUI versions recognize the 64 bit, which tells Epsilon not to translate the
Ctrl-6 combination into Ctrl-~, or Ctrl-(Minus) on the main keyboard into Ctrl-_.

—-ksnumber This flag lets you adjust the emphasis Epsilon puts on speed during long operations versus
responsiveness to the abort key. Higher numbers make Epsilon slightly faster overall, but when you
press the abort key, Epsilon may not respond as quickly. Lower numbers make Epsilon respond more
quickly to the abort key, but with a performance penalty. The default setting is —~ks100.

-1bytecode Giving this switch makes Epsilon load a bytecode file named bytecode.b after loading the state
file. If you give more than one -1 flag on the command line, the files load in the order they appear.
Compare the -b flag.

-mbytes This switch controls how much memory Epsilon uses for the text of buffers. Epsilon interprets a
number less than 1000 as a number of kilobytes, otherwise, as bytes. You may explicitly specify
kilobytes by ending bytes with ‘k’, or megabytes by ending byfes with ‘m’. Specify -m0 to use as
little memory as possible, and -m to put no limit on memory use.

If you read in more files than will fit in the specified amount of memory, or if despite a high limit, the
operating system refuses Epsilon’s requests for more memory, Epsilon will swap portions of the files
to disk. By default, Epsilon puts no limits on its own memory usage.

-noinit This flag tells Epsilon not to read any einit.ecm customization file.

-nologo In some environments Epsilon prints a short copyright message when it starts. This flag makes it
skip displaying that message.

-noserver This flag tells Epsilon for Windows or Unix that it should not register itself as a server so as to
accept messages from other instances of Epsilon. By default, Epsilon will receive messages from
future instances of Epsilon that are started with the —add flag, or (for Windows) sent via file
associations or DDE. See page 136 for details. The flag -nodde is a synonym.

16 Chapter 2. Getting Started

-pfilename This overrides the ESESSION configuration variable to control the name of the session file that
Epsilon uses. When you specify a file name, Epsilon uses that for the session file, just as with
ESESSION. Because the -p0 and -p1 flags enable and disable sessions (see the next item), the given
filename must not begin with a digit.

-pnumber This flag controls whether or not Epsilon restores your previous session when it starts up. By
default, Epsilon will try to restore your previous window and buffer configuration. The -p flag with
no number toggles whether Epsilon restores the session. Give the —p0 flag to disable session restoring
and saving, and the -p1 flag to enable session restoring and saving. This flag understands the same
values as the preserve-session variable; see its description for other options.

—-quickup Epsilon uses this flag to help perform certain updates. It searches for and loads a bytecode file
named quickup.b. This flag is similar to the -1 flag above, but the —quickup flag doesn’t require any
EEL functions to run. For that reason, it can replace and update any EEL function.

-rcommand Giving this switch makes Epsilon try to run a command or keyboard macro named command at
startup. If the command doesn’t exist, nothing happens. If you specify more than one -r flag on the
command line, they execute in the order they appear. Use the syntax -rcmdname=param or
-rcmdname!param to run an EEL subroutine and pass it a value; the subroutine must be defined to
accept a single parameter of char * type.

-sfilename When Epsilon starts up, it looks for a state file named epsilon-v13.sta. The state file contains
definitions for all of Epsilon’s commands. You can create your own state file by using the write-state
command. This switch says to use the state file with the name filename. Epsilon will add the
appropriate extension if you omit it. Specify a file name for filename, not a directory name. Of course,
the file name may include a directory or drive prefix. If you specify a relative file name, Epsilon will
search for it. See page 12. See also the -b flag, described above.

-sendonly The startup script in Epsilon for Mac OS X uses this flag in combination with the -add flag. It
makes Epsilon exit with an error code whenever no prior instance was found to receive the —add
command line.

-server:servername The command line flag —server may be used to alter the server name for an instance of
Epsilon. An instance of Epsilon started with -server:somename -add will only pass its command line
to a previous instance started with the same -server:somename flag. See page 136. The flag -dde is a
synonym.

-teach This flag tells Epsilon to load the on-line tutorial file at startup. See page 9.

-vex x indicates the number of columns you want displayed while in Epsilon. For example, use “-vc132”
for 132 columns. See the -vl flag, described below. See the —~geometry flag for the equivalent in
Epsilon for Unix.

-veolor Epsilon normally tries to determine whether to use a monochrome color scheme or a full-color one
based on the type of display in use and its mode. This flag forces Epsilon to use a full-color color
scheme, regardless of the type of the display.

-vlx x indicates the number of screen lines you want to use while in Epsilon. Also See the —vc switch,
described above. See —geometry for the equivalent in Epsilon for Unix.

-vmono Epsilon normally tries to determine whether to use a monochrome color scheme or a full-color one
based on the type of display in use and its mode. This flag forces Epsilon to use its monochrome color
scheme, regardless of the type of the display.

2.10. File Inventory 17

-vt (Unix only) This flag forces Epsilon to run as a curses-style terminal program, not an X11 program. By
default Epsilon for Unix runs as an X program whenever an X display is specified (either through a
DISPLAY environment variable or a -display flag), and a terminal program otherwise.

-vv This flag instructs Epsilon to split the screen vertically, not horizontally, when more than one file is
specified on the command line.

-vx and -vy These flags let you specify the position of Epsilon’s window in Epsilon for Windows. For
example, -vx20 -vy30 positions the upper left corner of Epsilon’s window at pixel coordinates
20x30. See —geometry for the equivalent in Epsilon for Unix.

-wnumber This flag controls several directory-related settings. Follow it with a number.

The -w1 flag tells Epsilon to remember the current directory from session to session. Without this
flag, Epsilon will remain in whatever current directory it was started from. Epsilon always records the
current directory when it writes a session file; this flag only affects whether or not Epsilon uses this
information when reading a session file.

The -w2 and -w4 flags have no effect in this version of Epsilon.

The -w8 flag tells Epsilon not to look for its own files in the parent of the directory containing the
Epsilon executable. See page 12.

The -w16 flag tells Epsilon to set its current directory to the directory containing the first file named
on its command line. If you edit files by dragging and dropping them onto a shortcut to Epsilon, you
may wish to use this flag in the shortcut.

The -w32 flag tells Epsilon to look for its own files in the directory containing the Epsilon executable
before searching the EPSPATH. See page 12.

You can combine -w flags by adding their values together. For example, -w9 makes Epsilon
remember the current directory and exclude its executable’s parent directory from the default
EPSPATH. These -w flags are cumulative, so -w1 -w8 works the same as -w9. Omitting the number
discards all prior -w flags on the command line, so -w9 -w -w32 acts like just ~-w32.

All Windows program icons for Epsilon invoke it with -w1 so that Epsilon remembers the current
directory.

-wait This flag tells Epsilon to locate an existing instance of Epsilon, pass it the rest of the command line,
and wait for the user in that instance to invoke the resume-client command. (Epsilon ignores the flag if
there’s no prior instance.) If you want to configure another program to run Epsilon to edit a file, but
use an existing instance of Epsilon, just include this flag in the Epsilon command line. See page 136
for details on Epsilon’s server support.

2.10 File Inventory

Epsilon consists of the following files:

setup.exe, setup.w02 (Windows only) Epsilon’s installation program.
epsilon.exe The 32-bit Epsilon for Windows executable program.
epsilonc.exe The Epsilon executable program for Win32 console mode.
epsdos.exe The Epsilon executable program for DOS-only systems.

epsdos.ico and epsdos.pif These files help the DOS version of Epsilon to run under Windows.

18 Chapter 2. Getting Started
eel.exe Epsilon’s compiler. You need this program if you wish to add new commands to Epsilon or modify
existing ones.

eel_lib.dll Under Windows, Epsilon’s compiler eel.exe requires this file. Epsilon itself also uses this file
when you compile from within the editor.

icudt*.dat, eunicode.dll These files help provide Unicode support.

conagent.pif, concur16.exe, concurl6.ico, and concurl6.pif Epsilon for Windows requires these files to
provide its concurrent process feature.

lugeps1.386 Epsilon for Windows requires this file under Windows 95/98/ME to provide its concurrent
process feature. It’s normally installed in your Windows System directory.

inherit.exe and inherit.pif Epsilon for Windows uses these files to execute another program and capture its
output.

sheller.exe and sheller.pif Epsilon for Windows 95/98/ME uses these files as well to execute another
program and capture its output.

edoc.hlp This Windows help file provides help on Epsilon.

epshlp.dll Epsilon’s help file communicates with a running copy of Epsilon so it can display current key
bindings or variable values and let you modify variables from the help file. It uses this file to do that.

sendeps.exe Epsilon for Windows uses this file to help create desktop shortcuts to Epsilon, or Send To
menu entries.

VisEpsil.dll Epsilon for Windows includes this Developer Studio extension that lets Developer Studio pass
all file-opening requests to Epsilon.

mspellemd.exe Epsilon’s speller uses this helper program to get suggestions from the MicroSpell speller.

winpty.exe and win-askpass.exe The secure shell (ssh) and secure file transfer (scp) features in Epsilon for
Windows use these helper programs to interact with Cygwin’s ssh program.

The installation program puts the following files in the main Epsilon directory, normally \Program
Files\Eps13 under Windows and /usr/local/epsilon13.16 under Unix.

epsilon-v13.sta This file contains all of Epsilon’s commands. Epsilon needs this file in order to run. If you
customize Epsilon, this file changes. The name includes Epsilon’s major version.

original.sta This file contains a copy of the original version of epsilon-v13.sta at the time of installation.

edoc Epsilon’s on-line documentation file. Without this file, Epsilon can’t provide basic help on commands
and variables.

info\epsilon.inf Epsilon’s on-line manual, in Info format.

info\dir A default top-level Info directory, for non-Unix systems that may lack one. See Info mode for
details.

lhelp* This directory contains files for the HTML version of Epsilon’s documentation. The lhelp helper
program reads them.

epswhip.hlp and epswhlp.cnt Epsilon uses these files to provide its search-all-help-files command under
Windows.

2.10. File Inventory 19
eteach Epsilon’s tutorial. Epsilon needs this file to give the tutorial (see page 9). Otherwise, Epsilon does
not need this file to run.

colclass.txt One-line descriptions of each of the different color classes in Epsilon. The set-color command
reads this file.

brief.kbd The brief-keyboard command loads this file. It contains the bindings of all the keys used in Brief
emulation, written in Epsilon’s command file format.

epsilon.kbd The epsilon-keyboard command loads this file. It contains the standard Epsilon key bindings
for all the keys that are different under Brief emulation, written in Epsilon’s command file format.

epsilon.mnu Epsilon for Unix uses this file to construct its menu bar, except in Brief mode.
brief.mnu In Brief mode, Epsilon for Unix uses this file to construct its menu bar.
gui.mnu Epsilon for Windows uses this file to construct its menu bar.

latex.env The tex-environment command in LaTeX mode (Alt-Shift-E) gets its list of environments from
this file. You can add new environments by editing this file.

lugaru.url This file contains a link to Lugaru’s World Wide Web site. If you have an Internet browser
installed under Windows, you can open this file via its file association and connect to Lugaru’s Web
site. The view-lugaru-web-site command uses this file.

readme.txt This file contains miscellaneous notes, and describes any features or files we added after we
printed this manual. You can use the Alt-x release-notes command to read it.

unwise.exe, unwise.ini If you used the Windows-based installer, you can uninstall Epsilon by running this
program.

install.log The Windows-based installer creates this file to indicate which files it installed. Uninstalling
Epsilon requires this file.

*.h The installation program copies a number of “include files” to the subdirectory “include” within
Epsilon’s main directory. These header files are used if you decide to compile an Epsilon extension or
add-on written in its EEL extension language.

eel.h Epsilon’s standard header file, for use with the EEL compiler.
codes.h Another standard header file, with numeric codes. The eel.h file includes this one automatically.
filter.h A header file defining the contents of Epsilon’s Common File Open/Save dialogs under Windows.

*.e These files contain source code in EEL to all Epsilon’s commands. The installation program copies
them to the subdirectory “source” within Epsilon’s main directory.

epsilon.e This file loads all the other files and sets up Epsilon.

makefile You can use this file, along with a “make” utility program, to help recompile the above Epsilon
source files. It lists the source files and provides command lines to compile them.

The directory “changes” within Epsilon’s main directory contains files that document new features
added in Epsilon 9 and earlier versions. See the online documentation for details on changes in more recent
versions. Other files in this directory may be used to help incorporate old customizations, when updating
from Epsilon 7 or earlier. See page 159 for information on updating to a new version of Epsilon.

Chapter 3

General Concepts

21

This chapter describes the framework within which the commands operate. The chapter entitled
“Commands by Topic”, which starts on page 35, goes into detail about every Epsilon command.

If you have never used Epsilon before, you should run the tutorial now. This chapter discusses some
general facilities and concepts used throughout Epsilon by many of the commands. You will find the
discussion much clearer if you’ve used the tutorial, and have become accustomed to Epsilon’s general style.

To run the tutorial, start Epsilon and select Epsilon Tutorial from the Help menu. (You can also press
the F2 key in Epsilon and type the command name tutorial, or start Epsilon with the -teach flag.)

3.1 Buffers

In Epsilon’s terminology, a buffer contains text that you can edit. You can think of a buffer as Epsilon’s copy
of a file that you have open for editing. Actually, a buffer may contain a copy of a file, or it may contain a
new “file” that you’ve created but have not yet saved to disk.

To edit a file, you read the file into a buffer, modify the text of the buffer, and write the buffer to the file.
A buffer need not necessarily correspond to a file, however. Imagine you want to write a short program from
scratch. You fire up Epsilon, type the text of the program into a buffer, then save the buffer to a file.

Epsilon does not place any limitation on the number of active buffers during an editing session. You can
edit as many buffers at the same time as you want. This implies that you can edit as many files, or create as
many files, or both, as you desire. Each document or program or file appears in its own buffer.

3.2 Windows

Epsilon displays your buffers to you in windows. You can have one window or many windows. You can
change the number and size of windows at any time. You may size a window to occupy the entire display, or
to occupy as little space as one character wide by one character high.

Each window can display any buffer. You decide what a window displays. You can always get rid of a
window without worrying about losing the information the window displays: deleting a window does not
delete the buffer it displays.

Each window displays some buffer, and several windows can each display the same buffer. This comes
in handy if you want to look at different parts of a buffer at the same time, say the beginning and end of a
large file.

A buffer exists whether or not it appears in some window. Suppose a window displays a buffer, and you
decide to refer to another file. You can read that file into the current window without disturbing the old
buffer. You peruse the new buffer, then return to the old buffer.

You may find this scheme quite convenient. You have flexibility to arrange your buffers however you
like on the screen. You can make many windows on the screen to show any of your buffer(s), and delete
windows as appropriate to facilitate your editing. You never have to worry about losing your buffers by
deleting or changing your windows.

Epsilon has many commands to deal with buffers and windows, such as creating, deleting, and changing
the size of windows, reading files into a buffer, writing buffers out to files, creating and deleting buffers, and
much more. We describe these in detail in the chapter “Commands by Topic”, which starts on page 35.

3.3 Epsilon’s Screen Layout

To see what buffers and windows look like, refer to figure 3.1. This shows what the screen looks like with
only one window. It shows what the screen looks like when you edit a file named screen. 1.

22 Chapter 3. General Concepts

‘w4 screen. 1l - Epsilon

File Edit Search Process Ukiliby Window Help

D/l 8| & @ o~ Qe @mx|
Thizs region of the screen iz called the WINDOW, Thiz is
the place where the Cext you are editing appears.

The text you are editing goes in this region.

The text wou are editing goes in this region.

The mode line displays wvarious information sbout this
window. The line helow this one is the MNCDE LINE.
— =creen.l [Fundsmentsl] 1,0 &11

Figure 3.1: What Epsilon looks like with one window.

The top section of the screen displays some of the text of the window’s buffer. Below that appears the
mode line. The mode line begins with the name of the file shown in that buffer. If the buffer isn’t associated
with any file, Epsilon substitutes the buffer name, in parentheses.

Next comes the name of the current major mode, followed by any minor modes, all surrounded by
square brackets. (See page 23.)

Then Epsilon shows the current column and line numbers (the first counting from zero, the second
counting from 1), and the percentage of the buffer before the cursor. A star (*) at the end of the line means
that you have changed the buffer since the last time you saved it to disk. (See the mode-format variable for
information on customizing the contents of the mode line.) The text area and the mode line collectively
constitute the window.

Below the mode line, on the last line of the screen, appears the echo area. Epsilon uses this area to
prompt you for information or to display messages (in the figure it’s empty). For example, the command to
read a file into a buffer uses the echo area to ask you for the file name. Regardless of how many windows
you have on the screen, the echo area always occupies the bottommost screen line.

When Epsilon displays a message in the echo area, it also records the message in the #messages#
buffer (except for certain transient messages). See the message-history-size variable to set how Epsilon
keeps the buffer from excessive size by dropping old messages.

Epsilon has an important concept called the editing point, or simply point. While editing a buffer, the
editing point refers to the place that editing “happens”, as indicated by the cursor. Point refers not to a
character position, but rather to a character boundary, a place between characters. You can think of point as,
roughly, the leftmost edge of the cursor. Defining the editing point as a position between characters rather
than at a particular character avoids certain ambiguities inherent in the latter definition.

Consider, for example, the command that goes to the end of a word, forward-word. Since point always
refers to a position between characters, point moves right after the last letter in the word. So the cursor itself
would appear underneath the first character after the word. The command that moves to the beginning of the
word, backward-word, positions point right before the first character in the word. In this case, the cursor
itself would appear under the first character in the word.

When you want to specify a region, this definition for point avoids whether characters near each end
belong to the region, since the ends do not represent characters themselves, but rather character boundaries.

Figure 3.2 shows Epsilon with 3 windows. The top window and bottom window each show the buffer
“main”. Notice that although these two windows display the same buffer, they show different parts of the

3.4. Different Keys for Different Uses: Modes 23

< main - Epsilon

File Edt Search Process Utility ‘Window Help

Diw|d| & &|sl@ o~ Qe @X|

This iz the first one of three windows being displayed at the same -
time. The window at the hottom of the screen is displaying the same
buffer that this window is displaving. In general, each window can
display any buffer. You can look at two different parts of the same

— mwain [Fundamwental] 1,0 Top *
the middle window. The buffer in this window is different from the
buffer in the other two windows. The name of this buffer is "other®™,
whereas the name of the buffers associated with the other two windows
iz "main®™. The blinking cursor always appears in the current window.
— other [Fundamental] 39,0 12%
display any buffer. You can look at two different parts of the same
buffer at the sawe time by having each in its own window. This can
bome in handy if you are, say, writing a documwent with a table of
contents and you want to he sure that the table of contents is right.
Fou just put the table of contents in one window, and use the other
window to check out the page nuwbers.

— mwain [Fundamwental] &,0 58% *

Figure 3.2: Epsilon with three windows.

buffer. The mode line of the top window says 0%, but the mode line of the bottom window says 58%. The
middle window displays a different buffer, named “other”. If the cursor appears in the middle window and
you type regular letters (the letters of your name, for example), they go into the buffer named “other” shown
in that window. As you type the letters, the point (and so the cursor) stays to the right of the letters.

In general, the current window refers to the window with the cursor, or the window where the “editing
happens”. The current buffer refers to the buffer displayed by the current window.

3.4 Different Keys for Different Uses: Modes

When you edit a C program, your editor should behave somewhat differently than when you write a letter, or
edit a Lisp program, or edit some other kind of file.

For example, you might want the third function key to search forward for a comment in the current
buffer. Naturally, what the editor should search for depends on the programming language in use. In fact,
you might have PHP in the top window and C++ in the bottom window.

To get the same key (in our example, the third function key) to do the right thing in either window,
Epsilon allows each buffer to have its own interpretation of the keyboard.

We call such an interpretation a mode. Epsilon comes with several useful modes built in, and you can
add your own using the Epsilon Extension Language (otherwise known as EEL, pronounced like the aquatic
animal).

Epsilon uses the mode facility to provide the dired command, which stands for “directory edit”. The
dired command displays a directory listing in a buffer, and puts that buffer in dired mode. Whenever the
current window displays that buffer, several special keys do things specific to dired mode. For example, the
‘e’ key displays the file listed on the current line of the directory listing, and the ‘n’ key moves down to the
next line of the listing. See page 130 for a full description of dired mode.

Epsilon also provides C mode, which knows about several C indenting styles (see page 81) and is used
for all C-like languages. Fundamental mode is a general-purpose editing mode used for scratch buffers and
plain text files. And there are many other modes, some associated with specific commands (like hex mode,
diff mode, or grep mode) and many more supporting individual programming languages or other file types.
See the section starting on page 80.

24 Chapter 3. General Concepts

Almost every mode has an associated command, named after the mode, that puts the current buffer in
that mode. The c-mode and fundamental-mode commands put the current buffer into those modes, for
instance.

Press F1 m to display help on the current buffer’s major mode.

The mode name that appears in a mode line suggests the keyboard interpretation active for the buffer
displayed by that window. When you start Epsilon with no particular file to edit, Epsilon uses Fundamental
mode, so the word “Fundamental” appears in the mode line. Other words may appear after the mode name
to signal changes, often changes particular to that buffer. We call these minor modes.

For example, the auto-fill-mode command sets up a minor mode that automatically types a (Return) for
you when you type near the end of a line. (See page 73.) It displays “Fill” in the mode line, after the name
of the major mode. A read-only buffer display “RO” to indicate that you won’t be able to modify it. There is
always exactly one major mode in effect for a buffer, but any number of minor modes may be active.
Epsilon lists all active minor modes after the major mode’s name.

Here are some common minor modes:

Fill indicates auto-filling is in effect for the current buffer. See page 73.
RO indicates the buffer is read-only. See page 112.

Pager is similar to RO, indicating the buffer is read-only and that (Space) and (Backspace) page forward
and back, but this behavior isn’t conditioned on the readonly-pages variable as read-only mode’s is.

Def indicates Epsilon is defining a keyboard macro. See page 145.
Susp indicates defining or running a keyboard macro has been suspended. See page 146.

Narrow indicates only a section of the buffer is being displayed, and the rest has been hidden. See page
166.

Sp indicates Epsilon will highlight misspelled words in the current buffer. See page 77.

Along with any minor modes, Epsilon will sometimes also display the name of a type of file translation
(one of DOS, Binary, Unix, or Mac). See page 115. It may also display the name of an encoding, such as
UTF-8, OEM, or windows-1258. See page 127.

3.5 Keystrokes and Commands: Bindings

Epsilon lets you redefine the function of nearly all the keys on the keyboard. We call the connection between
a key and the command that runs when you type it a binding.

For example, when you type the (Down) key, Epsilon runs the down-line command. The down-line
command, as the name suggests, moves the point down by one line. So when you type the (Down) key,
point moves down by one line.

You can change a key’s binding using the bind-to-key command. The command asks for the name of a
command, and for a key. Thereafter, typing that key causes the indicated command to run. Using
bind-to-key, you could, for example, configure Epsilon so that typing (Down) would run the
forward-sentence command instead of the down-line command.

This key-binding mechanism provides a great deal of flexibility. Epsilon uses it even to handle the
alphabetic and number keys that appear in the buffer when you type them. Most of the alphabetic and
number keys run the command normal-character, which simply inserts the character that invoked it into the
buffer.

3.6. Repeating: Numeric Arguments 25

Out of the box, Epsilon comes with a particular set of key bindings that make it resemble the EMACS
text editor that runs on many kinds of computers. Using the key-binding mechanism and the bind-to-key
command, you could rearrange the keyboard to make it resemble another editor’s keyboard layout. That is
exactly what the brief-keyboard command does; it rearranges the keyboard commands to make Epsilon work
like the Brief text editor. See page 148.

Epsilon provides over 400 commands that you can bind to keys, and you can write brand new
commands to do almost anything you want, and assign them to whatever keys you choose. See page 147 for
more information on the bind-to-key command.

Some commands have no default binding. You can invoke any command, bound or not, by giving its
name. The command named-command, normally bound to Alt-X, prompts for a command name and
executes that command. For example, if you type

Alt-X down-line

followed by pressing the (Enter) key, the cursor moves down one line. Of course, you would find it easier in
this example to simply type the (Down) key.

3.6 Repeating: Numeric Arguments

You can prefix a numeric argument, or simply an argument, to a command. This numeric argument
generally functions as a repeat count for that command. You may enter a numeric argument in several ways.
You may type Ctrl-U and then the number. You can also enter a numeric argument by holding down the Alt
key and typing the number using the number keys across the rop of the keyboard. Then you invoke a
command, and that command generally repeats that number of times.

For example, suppose you type the four characters Ctrl-U 2 6 Ctrl-N. The Ctrl-N key runs the command
named down-line, which moves point down one line. But given a numeric argument of 26, the command
moves point down 26 lines instead of 1 line. If you give a numeric argument of -26 by typing a minus key
while typing the 26, the down-line command would move point up 26 lines. You can get the same effect as
Ctrl-U 2 6 Ctrl-N by holding down the Alt key and typing 26 on the main keyboard, then typing Ctrl-N.
(Remember to release the Alt key first; otherwise you’d get Alt-Ctrl-N.)

You can give a numeric argument to any Epsilon command. Most commands will repeat, as our
example did above. But some commands use the numeric argument in some other way, which can vary from
command to command. Some commands ignore the numeric argument. We describe all the commands in
the chapter titled “Commands by Topic”, which starts on page 35.

3.7 Viewing Lists

Sometimes Epsilon needs to show you a list of information. For example, when it asks you for the name of a
file to edit, you might request a list of possible files to edit (see the next section). In such cases, Epsilon will
display the list of items in a pop-up window. While in a pop-up window, one line will stand out in a different
color. If you press (Enter), you select that item. To select another item, you can use normal Epsilon
commands such as (Up) and (Down) to move to the next and previous items, or (PageDown) and (PageUp)
to go to the next or previous windowful of items. You can even use Epsilon’s searching commands to find
the item you want. If you don’t want any item on the list, you can simply type another response instead.

If you want to select one of the items and then edit it, press Alt-E. Epsilon will copy the highlighted line
out of the list so can edit it.

26 Chapter 3. General Concepts

3.8 Typing Less: Completion & Defaults

Whenever Epsilon asks you for some information (for instance, the name of a file you want to edit), you can
use normal Epsilon commands to edit your response. For example, Control-A moves to the beginning of the
response line. Most commands will work here, as long as the command itself doesn’t need to prompt you for
more information.

At many prompts, Epsilon will automatically type a default response for you, and highlight it. Editing
the response will remove the highlight, while typing a new response will replace the default response. You
can set the variable insert-default-response to zero if you don’t want Epsilon to type in a response at
prompts.

If you type a Control-R or Control-S, Epsilon will type in the default text. This is especially useful if
you’ve told Epsilon not to automatically insert the default response, but it can also come in handy when
you’ve mistakenly deleted or edited the default response, and you want to get it back. It’s also convenient at
prompts where Epsilon doesn’t automatically type the default response, such as search prompts. Epsilon
keeps separate defaults for the regular expression and non-regular expression replace commands, and for the
regular expression and non-regular expression search commands. Epsilon will never overwrite what you
actually type with a default, and indeed will only supply a default if you haven’t yet specified any input for
the response.

Another way to retrieve a previous response is to type Alt-E. While Ctrl-R and Ctrl-S provide a
“suggested response” in many commands, Alt-E always types in exactly what you typed to that prompt last
time. For example, at the prompt of the write-file command, Ctrl-S types in the name of the directory
associated with the file shown in the current window, while Alt-E types in the last file name you typed at a
write-file prompt. See page 28.

Alt-G provides yet another suggested response; it’s often the name of the “current thing” for this
prompt; in a search-and-replace command, for instance, Alt-G when typing the replacement text inserts the
search text. In the write-file example, Alt-G inserts the current name of the file.

Sometimes Epsilon shows you the default in square brackets []. This means that if you just press
(Enter) without entering anything, Epsilon will use the value between the square brackets. Often you can
use the Ctrl-S or Alt-E keys to pull in that value, perhaps so that you can use regular Epsilon commands to
edit the response string.

Epsilon can also retrieve text from the buffer at any prompt. Press the Alt-(Down) key or Alt-Ctrl-N to
grab the next word from the buffer and insert it in your response. Press the key again to retrieve successive
words. This is handy if there’s a file name in the buffer that you now want to edit, for example. The keys
Alt-(PageDown) or Alt-Ctrl-V behave similarly, but retrieve from the current position to the end of the line.

You can also use pull completion to retrieve text at a prompt that isn’t at the current position, but
elsewhere in the buffer. Begin typing the word you want to retrieve; then press Ctrl-(Up) (or Ctrl-(Down))
to grab the previous (or next) word in the buffer that starts with what you’ve typed. F3 is the same as
Ctrl-(Up). See page 94 for details.

Whenever Epsilon asks for the name of something (like the name of a command, file, buffer, or tag),
you can save keystrokes by performing completion on what you type. For example, suppose you type Alt-X
to invoke a command by name, then type the letter ‘v’. Only one command begins with the letter ‘v’, the
visit-file command. Epsilon determines that you mean the visit-file command by examining its list of
commands, and fills in the rest of the name. We call this process completion.

To use completion, type a (Space) and Epsilon will fill in as much of the name as possible. The letters
Epsilon adds will appear as if you had typed them yourself. You can enter them by typing (Enter), edit them
with normal editing commands, or add more letters. If Epsilon cannot add any letters when you ask for
completion, it will pop up a list of items that match what you’ve typed so far. To disable automatic pop-ups
on completion, set the completion-pops-up variable to zero.

3.8. Typing Less: Completion & Defaults 27

o - [5]x]
D@ | & & E@ <~ 4ot X

R o mand @ blayed at the same

. irmg displaying the same

buf 1, each window can

dis | pt parts of the same

bufy IS~ b vindow. This can

com about-epsilon with & table of

con align-region f contents is right.

alt-prefix
ansi-to-oen
append-next-kill
apropos

ar ument

asm-mode
auto-fill-made
back-to-tab-stop
backward-character

Tou and use the other

i

backward-delete-character
backward-delete-word
backward-ifdef b

akK Cancel Help

— main [Fundamentsl] 1,0 ALl

Figure 3.3: Typing ‘?” shows all of Epsilon’s commands.

For example, four commands begin with the letters “go”, goto-beginning, goto-end, goto-line, and
goto-tag. If you type “go”, and then press (Space), Epsilon fills in “goto-" and waits for you to type more.
Type ‘b’ and another (Space), to see “goto-beginning”. Epsilon moves the cursor one space to the right of
the last letter, to indicate a match. Press (Enter) to execute the goto-beginning command.

The (Esc) key works just like the (Space) key, except that if a single match results from the completion,
Epsilon takes that as your response. This saves you a keystroke, but you don’t have the opportunity to check
the name before continuing. The (Tab) key does the same thing. However, inside a dialog under Windows,
these two keys perform their usual Windows functions of canceling the dialog, and moving around in the
dialog, respectively. They aren’t used for completion.

Typing a question mark during completion causes Epsilon to display a list of choices in a pop-up
window. Recall that completion works with buffer and file names, as well as with command names. For
example, you can get a quick directory listing by giving any file command and typing a question mark when
asked for the file name. Press the Ctrl-G key to abort the command, when you’ve read the listing. (See the
dired command on page 130 for a more general facility.)

Figure 3.3 shows you what Epsilon looks like when you type Alt-X (the named-command command),
and then press ‘?’ to see a list of the possible commands. Epsilon shows you all its commands in a pop-up
window. Epsilon provides many more commands than could fit in the window, so Epsilon shows you the first
window-full. At this point, you could press (Space) or (PgDn) to see the next window-full of commands, or
use searching or other Epsilon commands to go to the item you desire. If you want the highlighted item,
simply press (Enter) to accept it. If you type Alt-E, Epsilon types in the current item and allows you to edit
it. Type any normal character to leave the pop-up window and begin entering a response by hand.

Figure 3.4 shows what the screen looks like if you type ‘w’ after the Alt-X, then type ‘?’ to see the list
of possible completions. Epsilon lists the commands that start with ‘w’.

You can set variables to alter Epsilon’s behavior. The menu-width variable contains the width of the
pop-up window of matches that Epsilon creates when you press ‘?’. (Unix only. In Windows, drag the
dialog’s border to change its size.) The search-in-menu variable controls what Epsilon does when you
press ‘?” and then continue typing a response. If it has a value of zero, as it does by default, Epsilon moves
from the pop-up window back to the response area, and editing keys like (Left) navigate in the response. If

28 Chapter 3. General Concepts

o - [T
D |E| & & B@ e Qlab X

Thi LN E] hlayed st the same

t imng displaying the =sme

buf 1, each window can

dis ‘“’I ht parts of the same

buf wall-chart b window. This can

com what-is with & table of

widen-buffer
write-file
wrice-files-and-exic
write-region
write-session

con
Tou
wimn

f contents is right.
and use the other

write-state

ak. | Cancel Help

— main [Fundamental] 1,0 411

Figure 3.4: Typing “w?” shows all commands that start with ‘w’.

search-in-menu has a nonzero value, Epsilon moves in the pop-up menu of names to the first name that
matches what you’ve typed, and stays in the pop-up window. (If it can’t find a match, Epsilon moves back to
the prompt as before.)

During file name completion, Epsilon can ignore files with certain extensions. The
ignore-file-extensions variable contains a list of extensions to ignore. By default, this variable has the
value ‘| .obj|.exel.ol.bl|’, which makes file completion ignore files that end with .obj, .exe, .0, and .b.
Each extension must appear between |’ characters. You can augment this list using the set-variable
command, described on page 151.

Similarly, the only-file-extensions variable makes completion look only for files with certain
extensions. It uses the same format as ignore-file-extensions, a list of extensions surrounded by |
characters. If the variable holds a null pointer, Epsilon uses ignore-file-extensions as above.
Completion also restricts its matches using the ignore-file-basename and ignore-file-pattern
variables, which use patterns to match the names of files to be excluded. When the pattern the user types
doesn’t match any files due to such exclusions, Epsilon temporarily removes exclusions and lists matching
files again.

3.9 Command History

Epsilon maintains a list of your previous responses to all prompts. To select a prompt from the list, press the
Alt-(Up) key or Alt-Ctrl-P. Then use the arrow keys or the mouse to choose a previous response, and press
(Enter). If you want to edit the response first, press Alt-E.

For example, when you use the grep command to search in files for a pattern, you can press Alt-(Up) to
see a list of file patterns you’ve used before. If the pattern \windows\system*.inf appeared on the list,
you could position the cursor on it and then press Alt-E. Epsilon would copy the pattern out of the list so
you can edit it, perhaps replacing * . inf with *.ini. Both patterns would then appear in the history list
next time. Or you could just press (Enter) in the list of previous responses to use the same pattern.

You can also use Alt-E at any prompt to retrieve the last response without showing a list of responses

3.10. Mouse Support 29

first. For example, Ctrl-X Ctrl-F Alt-E will insert the full name of the last file you edited with the find-file
command.

Except in certain searching commands, you can press (Up) or Ctrl-P instead of Alt-(Up) key or
Alt-Ctrl-P. These normally behave the same, but you can set the recall-prior-response-options
variable to make the non-Alt versions of the keys select older command history responses without
displaying a list of all of them.

3.10 Mouse Support

Epsilon supports a mouse under Windows and under X11 in Unix. You can use the left button to position
point, or drag to select text. Double-clicking selects full words. (When a pop-up list of choices appears on
the screen, double-clicking on a choice selects it.) Use shift-clicking to extend or contract the current
selection by repositioning the end of the selection. Holding down the Alt key while selecting produces a
rectangle selection.

Once you’ve selected a highlighted region, you can drag it to another part of the buffer. Move the mouse
inside the highlighted region, hold down a mouse button and move the mouse to another part of the buffer
while holding down the button. The mouse cursor changes to indicate that you’re dragging text. Release the
mouse button and the text will move to the new location. To make a copy of the text instead of moving it,
hold down the Control key while dropping the text.

Dragging text with the mouse also copies the text to a kill buffer, just as if you had used the
corresponding keyboard commands to kill the text and yank it somewhere else. When you drag a
highlighted rectangular region of text, Epsilon’s behavior depends upon the whether or not the buffer is in
overwrite mode. In overwrite mode, Epsilon removes the text from its original location, replacing it with
spaces. Then it puts the text in its new location, overwriting whatever text might be there before. In insert
mode, Epsilon removes the text from its original location and shifts text to its right leftwards to fill the space
it occupied. Then it shifts text to the right in the new location, making room for the text.

You can use the left button to resize windows by dragging window corners or borders. For pop-up
windows only, dragging the title bar moves the window.

A pop-up window usually has a scroll bar on its right border. Drag the box or diamond up and down to
scroll the window. Click on the arrows at the top or bottom to scroll by one line. Click elsewhere in the
scroll bar to scroll by a page. In some environments, ordinary tiled windows have a scroll bar that pops up
when you move the mouse over the window’s right-hand border, or (for windows that extend to the right
edge of the screen), when you move the mouse past the right edge. The toggle-scroll-bar command toggles
whether tiled windows have pop-up scroll bars or permanent scroll bars.

Under X11, you can adjust the speed at which Epsilon scrolls due to mouse movements by setting the
scroll-rate variable. It contains the number of lines to scroll per second. The scroll-init-delay
variable contains the delay in hundredths of a second from the time the mouse button goes down and Epsilon
scrolls the first time, to the time Epsilon begins scrolling repeatedly.

In Epsilon for Windows, the right button displays a context menu (which you can modify by editing the
file gui.mnu). In other versions, the right mouse button acts much like the left button, but with a few
differences: On window borders, the right button always resizes windows, rather than scrolling or moving
them. When you double-click with the right mouse button on a subroutine name in a buffer in C mode,
Epsilon goes to the definition of that subroutine using the pluck-tag command (see page 48). To turn off this
behavior in a particular buffer, set the buffer-specific variable mouse-goes-to-tagto zero. To make the
right button jump to a subroutine’s definition when you double-click in any buffer, not just C mode buffers,
set the default value of this variable to one. If you don’t want C mode to automatically set this variable
nonzero, set the variable c-mode-mouse-to-tagto zero.

30 Chapter 3. General Concepts

You can click (or hold) the middle mouse button and drag the mouse to pan or auto-scroll—the speed
and direction of scrolling varies as you move the mouse. This works on wheeled mice or on any mouse with
three buttons. When you click the middle mouse button while holding down the Shift key, Epsilon pastes
text instead. See the mouse-center-yanks variable to change its behavior.

Epsilon for Windows or Unix (under X11) also recognizes wheel rolling on wheeled mice, and scrolls
the current window when you roll the wheel. See the wheel-click-1lines variable for more details.

Under X11, some programs automatically make any text you select using the mouse available to be
pasted in other programs. See the variable mouse-selection-copies to turn on this behavior for Epsilon.

3.11 The Menu Bar

The Windows GUI version of Epsilon provides a customizable menu bar and tool bar. To modify the menu
bar, edit the file gui.mnu. See the next section for details. You can turn it off by adding (set-gui-menu 0)
to your einit.ecm file (see page 154). To modify the tool bar, you can redefine the EEL command
standard-toolbar in the file menu.e.

868 X Complex.pm - Epsilon
File Edit Search HEEP tio Procezs Utility MWindow Help
Fluck tag Ctrl-® <Comma>
-rpdste_carteszian Go to tag, .. Ctrl-H <Dot>
Browse symbol,.. Ctrl-<HumSlash>
Recomputs avd retur Tag files, .. Ctrl-4 Alt-<Dot>
Select tag file... Ctrl-¥ Alt-<Comma>
zub update_cartesian
my F=zelf = =h Lmark ;
my fFr,. #t) = Previous bookmark R Ctrl-<MumStar>,. Alt-j
szelf-ric_dir Set named bookmark... Ctrl-# /
return fzelf - Jump to bookmark,, . Ctrl-H j nista]:
Go to line... Ctrl-H g

- opdate_polar
Reconpute and return the polar Form. given accurate cartesian Form,

zub update_polar £
my Fzelf = shift;
my b#x, fyd = Bifself-»{'cartesian'}3;
$eelf-rip_dirtyd = 0;
return $zelf->f'polar'}
return $=elf->L'polar '}

[0, 0 if #x == 0 && %y == 0;

[CORE: tmcqrt. {Fxedn + Suyxdy),

CORE ::atan2{$y, #x1]:

— /Systemndlibrary/PerldS, 8,6 Math/Comelex,om [Perl Fill RO] 330.0 14%

Figure 3.5: Epsilon’s text-based menu bar.

Other versions of Epsilon provide a text-based menu bar, which is hidden by default. Most of the
customization variables described below only apply to the text-based menu bar.

You can have Epsilon display a menu bar all the time with the toggle-menu-bar command, or press
Alt-F2 (the show-menu command) to display it at any time, and hide it again after you select a command.
When you use the menu bar to invoke a command that needs additional input, Epsilon automatically brings
up a list of options (as if you typed ‘?’) so that you can select one without using the keyboard.

You can change the contents of the menu bar by editing the appropriate .mnu file. See the next section.

If you hold down the Shift or Ctrl keys while selecting a menu bar command, Epsilon will run the
command with a numeric argument of 1. This is handy for commands that behave differently when given a

3.11. The Menu Bar 31

numeric argument. When you select an item on the text-based menu bar, Epsilon flashes the selected item.
The menu-bar-flashes variable holds the number of flashes (default two).

By default, Epsilon displays key bindings for menu items. Set the variable menu-bindings to zero to
disable this feature. (Epsilon for Windows ignores this variable and always displays such bindings.) Epsilon
computes bindings dynamically the first time it displays a particular menu column. (For several commands
with multiple bindings, the menu file selects a particular binding to display.) The rebuild-menu command
makes Epsilon reconstruct its menus: use this command after setting menu-bindings or editing and saving
a menu file.

By default, when you click on the text-based menu bar but release the mouse without selecting a
command, Epsilon leaves the menu displayed until you click again. Set the menu-stays-after-click
variable to zero if you want Epsilon to remove the menu when this happens.

3.11.1 Customizing Epsilon’s Menu

You can change the contents of Epsilon’s menu bar by editing a menu file, which uses an .mnu extension.
Epsilon stores the name of its menu file in the variable menu-file, except for Epsilon for Windows which
uses the variable gui-menu-file instead. Set the appropriate variable to make Epsilon use a different
menu file.

Emulations for Brief and CUA set these variables to make Epsilon use an alternative menu suitable for
those emulations, but by default, Epsilon for Windows uses a file named gui.mnu, while all other versions
use the file epsilon.mnu. If you put a customized version of an .mnu file in your customization directory (see
page 13), Epsilon will use it instead of the factory version.

The first line of a menu file holds the main menu bar. Each menu entry must have spaces on both sides.
Each of the submenus that follow begins with a line that has the submenu title from the main menu (again,
with spaces on both sides), then the width in characters of the submenu to create, not including command
bindings. The individual menu entries follow, each line containing the menu item name, one or more tab
characters, and the definition (normally the name of an Epsilon command to execute). A line starting with a
tab puts a blank line in the menu. An actual blank line ends the submenu. A line starting with # is a
comment.

If an entry contains a binding (meaning that text before the first tab character extends past the column
width indicated for that submenu), Epsilon uses the binding text as-is. Otherwise, Epsilon adds bindings
when it first displays the submenu.

Open in Notepad %notepad "%f"

A menu item usually specifies the name of an Epsilon command to run (actually any EEL function that
takes no parameters will work), but you can instead put % followed by the command line for an external
program Epsilon should run. The command line is interpreted as a file name template, which means you can
pass the the name of the current file name, or parts of the name, using % sequences, like %f for the full file
name. (See page 115.)

Search the web I"c:\path\to\chrome.exe" https://google.com
I"c:\path\to\chrome.exe" https://google.com/search?q=!
Note: Above is actually one long line.

Or instead of the name of an Epsilon command, you can put the full path to an external program to run,
surrounded by ! characters. Optionally, following the second ! character, you can put a second command
line with a third ! within it. If there’s a highlighted region when the menu item is run, Epsilon will use this
second command line and substitute the text of the highlighted region for the third ! character.

32 Chapter 3. General Concepts

Or instead of an Epsilon command name, you can put the name of a Windows help file with a $
character before it. Epsilon for Windows will then display that help file.

3.11. The Menu Bar

33

Chapter 4

Commands by Topic

35

This chapter lists all the Epsilon commands, grouped by topic. Each section ends with a summary of the
keys, and the names you would use to invoke the commands by name, or to rebind them to other keys.

4.1 Getting Help

You can get help on Epsilon by typing F1, the help key. The help key will provide help at any time. If you
type it during another command, help simply pops up a description of that command. Otherwise, the help
command asks you to type an additional key to indicate what sort of help you want. Many of these options
are also available directly from Epsilon’s Help menu item, in versions with a menu bar.

The help command actually uses various commands which you can invoke individually. Here are the
keys you can use at the help prompt.

Pressing A invokes the apropos command, which asks for a string, looks through the one-line
descriptions of all the commands and variables, then pops up a list of commands or variables (and their
descriptions) that contain the string, along with their key bindings. Highlighted words are links to the full
documentation.

(The Info, HTML-based, and WinHelp formats of Epsilon’s full manual each include their own search
function. These will perform full-text searches throughout Epsilon’s manual, often finding many more
matches than apropos finds by searching one-line descriptions.)

Help’s K option invokes the describe-key command. It prompts for a key and provides full
documentation on what that key does.

The C option invokes the command describe-command, which provides full documentation on the
command whose name you specify, and also tells which keys invoke that command.

The B option invokes the command show-bindings, which asks for a command name and gives you the
keys that run that command.

The I option invokes the command info, which starts Info mode. Info mode lets you read the entire
Epsilon manual, as well as any other documentation you may have in Info format. See page 37.

The F option is a shortcut into Epsilon’s manual in Info mode. It prompts for some text, then looks up
that text in the index of Epsilon’s online manual. Just press (Enter) to go to the top of the manual. This
option invokes the command epsilon-info-look-up; the command epsilon-manual-info goes to the top of
Epsilon’s documentation without prompting.

The Ctrl-C option prompts for the name of an Epsilon command, then displays an Info page from
Epsilon’s online manual that describes the command.

The Ctrl-K option prompts for a key, then displays an Info page from Epsilon’s online manual that
describes the command it runs.

The Ctrl-V option prompts for an Epsilon variable’s name, then displays an Info page from Epsilon’s
online manual that describes that variable.

The H option displays Epsilon’s manual in HTML format, by running a web browser. It prompts for a
topic, which can be a command or variable name, or any other text. (The browser will try to find an exact
match for what you type; if not, it will search for web pages containing that word.) When you’re looking at
Epsilon’s manual in Info mode, using one of the previous commands, this command will default to showing
the same topic in a browser.

The W option, in Epsilon for Windows versions prior to Vista, displays Epsilon’s WinHelp help file.
Like the Info-format manual, it contains the complete text of the Epsilon manual. (Windows Vista and later
no longer support WinHelp natively, so such users should select HTML or Info help formats instead. It’s
possible to install WinHelp onto later Windows systems, then enable its macros with a registry entry, if you
prefer this style of help. See Microsoft’s web site.)

36 Chapter 4. Commands by Topic

The Q option invokes the command what-is, which asks for a key and tells you what command would
run if you typed that key.

The R option invokes the describe-variable command, which asks for a variable name and displays the
help on that variable.

The L option invokes the show-last-keys command, which pops up a window that displays the last 60
keystrokes you typed.

The M option displays help on the major mode of the current buffer. For example, when you’re editing
a C file, this command displays help on C mode.

The T option shows context-sensitive help on the word at point. The help source varies based on the
buffer’s mode. See page 96.

The V command displays Epsilon’s version number and similar information.

The ? option displays information on the help command itself, including its options, just as typing the
help key again would.

The B and Q options tell you about bindings without showing you the associated documentation on the
command. In contrast to the first three options, these two display their information in the echo area, instead
of popping up a window.

The wall-chart command creates a table showing the commands invoked by all the keys. It builds a chart
in a buffer named “wall”. The wall chart includes any changes you may have made to the normal key
bindings. You can print it and attach it to any convenient wall using the print-buffer command.

Epsilon’s help system keeps track of any changes that you make to Epsilon. For example, if you
completely remap the keyboard, Epsilon’s help system will know about it and still give you correct key
binding information. And Epsilon’s help system will also keep track of any commands or keyboard macros
that you write and add to Epsilon.

The release-notes command reads and displays the release notes for this version of Epsilon.

Some of Epsilon’s help commands use the on-line documentation file, edoc. This file contains
descriptions for each of Epsilon’s commands and variables. See the description of the -fd flag on page 14.

While some help commands provide help using a specific format like WinHelp or HTML help, others
change their format based on the current platform. For instance, pressing the help key at a prompt shows
help using WinHelp on earlier Windows systems, using HTML help on Vista and later Windows version
(which don’t include WinHelp) and on Unix under X11, and using popup help windows on Unix systems in
console mode. You can select a different preferred help format by setting the variables
epsilon-help-format-win-gui, epsilon-help-format-win-console, and
epsilon-help-format-unix-gui.

Summary: F1, Alt-?, Ctrl-_ help
F1 A apropos
F1 K describe-key
F1C describe-command
F1 R describe-variable
F1L show-last-keys
F1 Q, F6 what-is
F1 B, F5 show-bindings
F1 Ctrl-C info-goto-epsilon-command
F1 Ctrl-K info-goto-epsilon-key
F1 Cul-V info-goto-epsilon-variable

F1V about-epsilon

4.1. Getting Help 37

F1F epsilon-info-look-up
wall-chart
release-notes
epsilon-manual
epsilon-manual-info

41.1 Info Mode

Epsilon’s Info mode lets you read documentation in Info format. You can press F1 i to start Info mode. One
example of documentation available in Info format is Epsilon’s manual.

An Info document is divided into nodes. Each node describes a specific topic. Nodes are normally
linked together into a tree structure.

Every node has a name, which appears on the very first line of the node. The first line might look like
this:

File: cp, Node: Files, Next: More Options, Prev: Flags, Up: Top

That line also indicates that the node named “More Options” comes next after this “Files” node. And it
says which node comes before it, and which node is its parent. (Some nodes don’t have a “Next” or a “Prev”
or an “Up” node.) In Info mode, the keys N, P, and U move to the current node’s Next node, its Prev node,
or its Up node (its parent node).

You can scroll through a node with the usual Epsilon commands, but Info mode also lets you use
(Space) to page forward and (Backspace) to page back. When you’re at the end of a node, the (Space) key
goes on to the next one, walking the tree structure so you can read through an entire Info file. The
(Backspace) key does the reverse; it goes to the previous node when you press it and you’re already at the
top of a node. (The keys] and [move ahead and back similarly, but don’t page; use them when you don’t
want to see any more of the current node.)

Some nodes have menus. They look like this:
* Menu:

* Buffers::
* Flags::
* Switches: Flags.

Press the M key to select an item from a menu, then type the name of the item (the part before the :
character). You can press (Space) to complete the name, or type just part of the name. The first two menu
items let you type Buffers or Flags and go to a node with that same name; the last item lets you type
Switches but Epsilon will go to a node named Flags.

You can also press a digit like 1, 2, 3 to go to the corresponding node in the current node’s menu. Press
0 to go to the last node, whatever its number. So in the menu above, either 3 or 0 would go to the Flags node.
Typically when you select a node from a menu, that node’s Up will lead back to the node with the menu.

A node can also have cross-references. A cross-reference looks like this: *Note: Command History::.
Use the F key to follow a cross reference; it completes like M does.

Instead of typing M or F followed by a node name, you can use (Tab) and (Backtab) to move around in
a node to the next or previous menu item or cross-reference, then press (Enter) to follow it. Or you can
double-click with the mouse to follow one.

38 Chapter 4. Commands by Topic

Epsilon keeps a history of the Info nodes you’ve visited, so you can retrace your steps. Press L to go to
the last Info node you were at before this one. Press L repeatedly to revisit earlier nodes. When you’re done
looking at Info documentation, press Q to exit Info mode.

Info documentation is tree-structured. Normally each separate program has its own file of
documentation, and the nodes within form a tree. Each Info file normally has a node named “top” that’s the
top node in its tree. Then all the trees are linked together in a directory file named “dir”, which contains a
menu listing all the available files. The T key goes to the top node in the current file. The D key goes to the
top node in the directory file. The wrap-info-mode variable controls how long lines display.

When a node name reference contains a word in parentheses, like (epsilon)Language Modes, it
indicates the node is in a file whose name is inside the parentheses. (Otherwise the node must be in the
current file.) If you omit the node name and just say (epsilon), the Top node is implied.

When a complete path to an Info file isn’t specified (as is usually the case), Epsilon looks along an Info
path. First it looks in each directory of the colon-separated list in the variable info-path-unix (or, in
non-Unix versions of Epsilon, the semicolon-separated list in info-path-non-unix). These paths may use
%x to indicate the directory containing Epsilon’s executable. If the Info file still isn’t found, Epsilon tries
directories listed in any INFOPATH environment variable.

Press S to search in an Info file. You can use the same keys as in other Epsilon search commands to
perform a regular expression search, word search, or control case folding. This command will jump from
node to node if necessary to find the next match. If you use normal searching keys like Ctrl-S or Ctrl-R, they
will report a failing search if there are no more matches in the current node. Press Ctrl-S or Ctrl-R again to
have Epsilon continue the search into other nodes.

Press I to use an Info file’s index. I (Enter) simply moves to the first index node in a file. Or you can
type some text, and Epsilon will display each of the nodes in the file that have an index entry containing that
text. Use (Comma) to advance to the next such entry.

There are a few more Info commands. B goes to the beginning of the current node, like Alt-<. > goes to
the last node of the file, viewed as a hierarchy. G prompts for the name of a node, then goes there. (You can
use it to reach files that might not be linked into the Info hierarchy.) H displays this documentation. And ?
displays a short list of Info commands.

You can navigate to Epsilon’s manual using Info commands, as explained above, but Epsilon also
provides some shortcut commands. Press F1 Ctrl-C to look up an Epsilon command’s full documentation by
command name. Press F1 Ctrl-K, then press any key and Epsilon will show the documentation for whatever
command it runs. Press F1 Ctrl-V to look up a variable. Press F1 f (Enter) to go to the top of Epsilon’s
documentation tree, or type a topic name before the (Enter) and Epsilon will look up that word in the index
to Epsilon’s online documentation.

If you write you own Info file, Epsilon provides some commands that help. The info-validate command
checks an Info file for errors (such as using a nonexistent node name). The info-tagify command builds or
updates an Info file’s tag table. (Info readers like Epsilon can find nodes more quickly when a file’s tag table
is up to date, so run this after you modify an Info file.)

Summary: Info mode only: N info-next
Info mode only: P info-previous
Info mode only: U info-up
Info mode only: (Space) info-next-page
Info mode only: (Backspace) info-previous-page
Info mode only: [info-backward-node
Info mode only:] info-forward-node

Info mode only: M info-menu

4.1. Getting Help

Info mode only: 0, 1, 2, ... info-nth-menu-item
Info mode only: F info-follow-reference
Info mode only: (Tab) info-next-reference
Info mode only: Shift-(Tab) info-previous-reference
Info mode only: (Enter) info-follow-nearest-reference
Info mode only: L info-last

Info mode only: Q info-quit

Info mode only: T info-top

Info mode only: D info-directory-node
Info mode only: S info-search

Info mode only info-index

39

|
Info mode only: (Comma) info-index-next
Info mode only: > info-last-node
Info mode only: G info-goto
info
info-mode
info-validate
info-tagify

41.2 Web-based Epsilon Documentation

Epsilon’s online manual is available in three formats:

* You can read the manual in an Epsilon buffer using Info mode by pressing F1 f. See page 37.

* Users running Microsoft Windows versions prior to Windows Vista can access the WinHelp version
of the manual by pressing F1 w. See page 35 for more information.

* You can view the HTML version of the manual using a web browser by pressing F1 h.

To display the HTML manual, Epsilon starts a documentation server program. This is named lhelp.exe
(or Ihelpd in Unix). The documentation server runs in the background, hiding itself from view, and your web
browser communicates with it on a special “port”, as if it were a web server.

The documentation server must be running in order to serve documentation, so a bookmark to a page in
the documentation will only work if the documentation server is running. You can press F1 h in Epsilon to
ensure it’s running. To force an instance of the documentation server to exit, invoke it again with the -q flag.

If your browser is configured to use a proxy, you will typically need to tell it not to use proxy settings
for addresses starting with 127.0.0.1 so that it may connect to the local documentation server.

Epsilon for Unix uses a shell script named goto_url to run a browser. You can edit it if you prefer a
different browser. Epsilon will first look for a customized copy of goto_url in your ~/.epsilon directory.
If there is none, it will search for and invoke any customized copy of goto_url it finds on your path.
Failing that, it will use the standard copy installed in Epsilon’s bin directory. Epsilon for Windows uses the
system’s default browser.

40 Chapter 4. Commands by Topic

4.2 Moving Around

4.21 Simple Movement Commands

The most basic commands involve moving point around. Recall from page 22 that point refers to the place
where editing happens.

The Ctrl-F command moves point forward one character, and Ctrl-B moves it back. Ctrl-A moves to the
beginning of the line, and Ctrl-E moves to its end.

Ctrl-N and Ctrl-P move point to the next and previous lines, respectively. They will try to stay in the
same column in the new line, but will never expand a line in order to maintain the column; instead they will
move to the end of the line (but see below). The key Alt-< moves point before the first character in the
buffer, and Alt-> moves point after the last character in the buffer.

You can use the arrow keys if you prefer: the (Right) key moves forward a character, (Left) moves back
a character, (Down) moves down a line, and (Up) moves up a line. Most commands bound to keys on the
numeric keypad also have bindings on some control or alt key for those who prefer not to use the keypad.
Throughout the rest of this chapter, the explanatory text will only mention one of the bindings in such cases;
the other bindings will appear in the summary at the end of each section.

By default, pressing (Right) at the end of the line moves to the start of the next line. When you press
(Down) at the end of a 60-character line, and the next line only has 10 characters, Epsilon moves the cursor
back to column 10. You can change this by setting the buffer-specific virtual-space variable (by default
zero). If you set it to one, the (Up) and (Down) keys will stay in the same column, even if no text exists
there. If you set it to two, in addition to (Up) and (Down), the (Right) and (Left) keys will move into places
where no text exists, always remaining on the same line of the buffer. Setting virtual-space to two only
works correctly on lines longer than the window when Epsilon has been set to scroll long lines (the default),
rather than wrapping them (see page 101). Some commands behave unexpectedly on wrapped lines when
virtual-spaceis two.

When you move past the bottom or top of the screen using (Up) or (Down), Epsilon scrolls the window
by one line, so that point remains at the edge of the window. If you set the variable scroll-at-end
(normally 1) to a positive number, Epsilon will scroll by that many lines when (Up) or (Down) would leave
the window. Set the variable to 0 if you want Epsilon to instead center the current line in the window.

Summary: Ctrl-A, Alt-(Left) beginning-of-line
Ctrl-E, Alt-(Right) end-of-line
Ctrl-N, (Down) down-line
Ctrl-P, (Up) up-line
Ctrl-F, (Right) forward-character
Ctrl-B, (Left) backward-character
Alt-<, Ctrl-(Home) goto-beginning
Alt->, Ctrl-(End) goto-end

4.2.2 Moving in Larger Units
Words
Epsilon has several commands that operate on words. A word usually consists of a sequence of letters,

numbers, and underscores. The Alt-F and Alt-B commands move forward and backward by words, and the
Alt-D and Alt-(Backspace) commands kill forward and backward by words, respectively. Like all killing

4.2. Moving Around 41

commands, they save away what they erase (see page 56 for a discussion on the killing commands).
Epsilon’s word commands work by moving in the appropriate direction until they encounter a word edge.

The word commands use a regular expression to define the current notion of a word. They use the
buffer-specific variable word-pattern. This allows different modes to have different notions of what
constitutes a word. Most built-in modes, however, make word-pattern refer to the variable
default-word, which you can modify. See page 63 for information on regular expressions, and page 151
for information on setting this variable.

You can set the forward-word-to-start variable nonzero if you want Epsilon to stop at the start of a
word instead of at its end when moving forward.

Summary: Alt-F, Ctrl-(Right) forward-word
Alt-B, Ctrl-(Left) backward-word
Alt-(Backspace) backward-kill-word
Alt-D kill-word

Sentences

For sentences, Epsilon has the Alt-E and Alt-A keys, which move forward and backward by sentences, and
the Alt-K key, which deletes forward to the end of the current sentence. A sentence ends with one of the
characters period, !, or ?, followed by any number of the characters ", ’,),], followed by two spaces or a
newline. A sentence also ends at the end of a paragraph. The next section describes Epsilon’s notion of a
paragraph.

You can set the sentence-end-double-space variable to change Epsilon’s notion of a sentence. The
commands in this section will require only one space at the end of a sentence, and paragraph filling
commands will use one space as well. Note that Epsilon won’t be able to distinguish abbreviations from the
ends of sentences with this style.

Summary: Alt-E forward-sentence
Alt-A backward-sentence
Alt-K kill-sentence
Paragraphs

For paragraphs, the keys Alt-] and Alt-[move forward and back, and the key Alt-H puts point and mark
around the current paragraph. Blank lines (containing only spaces and tabs) always separate paragraphs, and
so does the form-feed character “L.

You can control what Epsilon considers a paragraph using two variables.

If the buffer-specific variable indents-separate-paragraphs has a nonzero value, then a paragraph
also begins with a nonblank line that starts with a tab or a space.

If the buffer-specific variable tex-paragraphs has a nonzero value, then Epsilon will not consider as
part of a paragraph any sequence of lines that each start with at sign or period, if that sequence appears next
to a blank line. And lines starting with \begin or \end, or with %, \[, \], or $$, or ending with \\, will also
delimit paragraphs.

42 Chapter 4. Commands by Topic

Summary: Alt-], Alt-(Down) forward-paragraph
Alt-[, Alt-(Up) backward-paragraph
Alt-H mark-paragraph

Parenthetic Expressions

Epsilon has commands to deal with matching parentheses, square brackets, curly braces, and similar
delimiters. We call a pair of these characters with text between them a level. You can use these level
commands to manipulate expressions in many programming languages, such as Lisp, C, and Epsilon’s own
embedded programming language, EEL.

A level can contain other levels, and Epsilon won’t get confused by the inner levels. For example, in the
text “one (two (three) four) five” the string “(two (three) four)” constitutes a level. Epsilon recognizes that
“(three)” also constitutes a level, and so avoids the mistake of perhaps calling “(two (three)” a level. In each
level, the text inside the delimiters must contain matched pairs of that delimiter. In many modes, Epsilon
knows to ignore delimiters inside strings or comments, when appropriate.

Epsilon typically recognizes the following pairs of enclosures: ‘(" and ‘), ‘[* and]’, *{" and ‘}". The
command Ctrl-Alt-F moves forward to the end of the next level, by looking forward until it sees the start of
a level, and moving to its end. The command Ctrl-Alt-B moves backward by looking back for the end of a
level and going to its beginning. The Ctrl-Alt-K command kills the next level by moving over text like
Ctrl-Alt-F and killing as it travels, and the Alt-(Del) command moves backward like Ctrl-Alt-B and kills as
it travels. A mode may define a different set of grouping characters, such as < and > for HTML mode.

The Alt-) key runs the find-delimiter command. Use it to temporarily display a matching delimiter. The
command moves backward like Ctrl-Alt-B and pauses for a moment, showing the screen, then restores the
screen as before. The pause normally lasts one half of a second, or one second if the command must
temporarily reposition the window to show the matching delimiter. You can specify the number of
hundredths of a second to pause by setting the variables near-pause and far-pause. Also, typing any key
will immediately restore the original window context, without further pause.

The show-matching-delimiter command inserts the key that invoked it by calling normal-character and
then invokes find-delimiter to show its match. The maybe-show-matching-delimiter command is similar, but
only invokes find-delimiter if the Matchdelim variable is nonzero. In Fundamental mode, the), ‘]” and ‘}’
keys run maybe-show-matching-delimiter.

In some modes, when the cursor is over or next to a delimiter, Epsilon will automatically seek out its
matching delimiter and highlight them both. (The auto-show-adjacent-delimiter variable controls
whether highlighting occurs when next to a delimiter, not on it.) See the descriptions of the individual
modes for more information.

Summary: Alt-) find-delimiter
Ctrl-Alt-F forward-level
Ctrl-Alt-B backward-level
Ctrl-Alt-K kill-level
Alt-(Del) backward-kill-level

show-matching-delimiter

4.2. Moving Around 43

4.2.3 Searching

Epsilon provides a set of flexible searching commands that incorporate incremental search. In the
incremental-search command, Epsilon searches as you type the search string. Ctrl-S begins an incremental
search forward, and Ctrl-R starts one in reverse. Any character that normally inserts itself into the buffer
becomes part of the search string. In an incremental search, Ctrl-S and Ctrl-R find the next occurrence of the
string in the forward and reverse directions, respectively. With an empty search string, Ctrl-S or Ctrl-R will
either reverse the direction of the search, or bring in the previously used search string. (To retrieve older
search strings, see page 28.)

You can use (Backspace) to remove characters from the search string, and enter control characters and
meta characters (characters with the eighth bit set) in the search string by quoting them with Ctrl-Q. (Type
Ctrl-Q Ctrl-J to search for a (Newline) character.) Use the Ctrl-G abort command to stop a long search in
progress.

Typing (Enter) or (Esc) exits from an incremental search, makes Epsilon remember the search string,
and leaves point at the match in the buffer.

While typing characters into the search string for incremental-search, a Ctrl-G quits and moves point
back to the place the search started, without changing the default search string. During a failing search,
however, Ctrl-G simply removes the part of the string that did not match.

If you type an editing key not mentioned in this section, Epsilon exits the incremental search, then
executes the command bound to the key.

You can make Epsilon copy search text from the current buffer by typing Alt-(Down). Epsilon will
append the next word from the buffer to the current search string. This is especially convenient when you see
a long variable name, and you want to search for other references to it. (It’s similar to setting the mark and
moving forward one word with Alt-F, then copying the text to a kill buffer and yanking it into the current
search string.) Similarly, Alt-(PageDown) appends the next line from the current buffer to the search string.
These two keys are actually available at almost any Epsilon prompt, though they’re especially useful when
searching. Alt-Ctrl-N and Alt-Ctrl-V are synonyms for Alt-(Down) and Alt-(PageDown), respectively.

While Alt-(Down) and Alt-(PageDown) copy text from the buffer at point, using the word pulling keys
F3, Ctrl-(Up) or Ctrl-(Down) copies text into the search string from other parts of the buffer; see page 94.

You can change how Epsilon interprets the search string by pressing certain keys when you type in the
search string. Pressing the key a second time restores the original interpretation of the search string.

* Pressing Ctrl-C toggles the state of case folding. While case folding, Epsilon considers upper case and
lower case the same when searching, so a search string of “Word” would match “word” and “WORD”
as well.

Epsilon remembers the state of case folding for each buffer separately, using the buffer-specific
variable case-fold. When you start to search, Epsilon sets its default for case folding based on that
variable’s value for the current buffer. Toggling case folding with Ctrl-C won’t affect the default. Use
the toggle-case-fold command to do this, or set the case-fold variable using the set-variable
command described on page 151 to change the default for case folding.

* Pressing Ctrl-W toggles word searching. During word searching, Epsilon only looks for matches
consisting of complete words. For instance, word searching for ‘a’ in this sentence finds only one
match (the one in quotes), but five when not doing word searching. You can type multiple words
separated by spaces, and Epsilon will recognize them no matter what whitespace characters separate
them (for instance, if they’re on successive lines).

* Pressing Ctrl-T makes Epsilon interpret the search string as a regular expression search pattern, as
described on page 63. Another Ctrl-T turns off this interpretation. If the current search string denotes

44 Chapter 4. Commands by Topic

an invalid regular expression, Epsilon displays “Bad R-E Search: <string>” instead of its usual
message “R-E Search: <string>” (where <string> refers to the search string). (When word and
regular expression modes are combined, the entire pattern must start and end on a word boundary. Use
</word> to match word boundaries within it.)

* Pressing Ctrl-O toggles incremental searching. In an incremental search, most editing commands will
exit the search, as described above. But you may want to edit the search string itself. If you turn off
the “incremental” part of incremental search with the Ctrl-O key, Epsilon will let you use the normal
editing keys to modify the search string.

In non-incremental mode, Epsilon won’t automatically search after you type each character, but you
can tell it to find the next match by typing Ctrl-S or Ctrl-R (depending on the direction). This
performs the search but leaves you in search mode, so you can find the next occurrence of the search
string by typing Ctrl-S or Ctrl-R again. When you press (Enter) to exit from the search, Epsilon will
search for the string you’ve entered, unless you’ve just searched with Ctrl-S or Ctrl-R. (In general, the
(Enter) key causes a search if the cursor appears in the echo area. If, on the other hand, the cursor
appears in a window showing you a successful search, then typing the (Enter) key simply stops the
search.) A numeric argument of n to a non-incremental search will force Epsilon to find the nth
occurrence of the indicated string.

Epsilon interprets the first character you type after starting a search with Ctrl-S or Ctrl-R a little
differently. Normally, Ctrl-S starts an incremental search, with regular expression searching and word
searching both disabled. If you type Ctrl-T or Ctrl-W to turn one of these modes on, Epsilon will also turn
off incremental searching. Epsilon also pulls in a default search string differently if you do it immediately. It
will always provide the search string from the last search, interpreting the string as it did for that search. If
you retrieve a default search string at any other time, Epsilon will provide the last one consistent with the
state of regular expression mode (in other words, the last regular expression pattern, if in regular expression
mode, or the last non-regular-expression string otherwise).

There are other ways besides Ctrl-S or Ctrl-R to retrieve previous search strings. You can press Alt-(Up)
or Ctrl-Alt-P to display a list of previous search patterns. Press (Enter) to select one. Or you can press Alt-g
at a search prompt to retrieve the search string from your last search in the current buffer only. This can
differ from the default search string you get when you use Ctrl-S or Ctrl-R, since those are not per-buffer.

The Ctrl-Alt-S and Ctrl-Alt-R commands function like Ctrl-S and Ctrl-R, but they start in
regular-expression, non-incremental mode. You can also start a plain string search in non-incremental mode
using the string-search and reverse-string-search commands. Some people like to bind these commands to
Ctrl-S and Ctrl-R, respectively. Also see the search-positions-at-start variable.

Keep in mind that you can get from any type of search to any other type of search by typing the
appropriate subcommands to a search. For example, if you meant to do a regex-search but instead typed
Ctrl-S to do an incremental search, you could enter regex mode by typing Ctrl-T. Figure 4.1 summarizes the
search subcommands.

When you’re at the last match of some text in a buffer, and tell incremental search to search again by
pressing Ctrl-S, Epsilon displays “Failing” to indicate no more matches. If you press Ctrl-S once more,
Epsilon will wrap to the beginning of the buffer and continue searching from there. It will display
“Wrapped” to indicate it’s done this. If you keep on search, eventually you’ll pass your starting point again;
then Epsilon will display “Overwrapped” to indicate that it’s showing you a match you’ve already seen. A
reverse search works similarly; Epsilon will wrap to the end of the buffer when you keep searching after a
search has failed. (You can set the search-wraps variable to zero to disable wrapping.)

In some modes like Info mode, where a buffer displays a single part of some larger collection of text,
pressing Ctrl-S at a failing search results in a continued search, instead of wrapping. Epsilon displays
“Continued” to indicate (in the case of Info mode) that it’s searching through other nodes.

4.2. Moving Around 45

Ctrl-S or Ctrl-R Switch to a new direction, or find the next occurrence in the same direction,
or pull in the previous search string.

normal key Add that character to the search string.
(Backspace) Remove the last character from the search string.

Ctrl-G Stop a running search, or (in incremental mode) delete characters until the search suc-
ceeds, or abort the search, returning to the starting point.

Ctrl-O Toggle incremental searching.

Ctrl-T Toggle regular expression searching.

Ctrl-W Toggle word searching. Matches must consist of complete words.
Ctrl-C Toggle case folding.

(Enter) Exit the search.

Ctrl-D or (Del) Delete the current match and exit the search (but see the
search-delete-match variable).

Ctrl-Q Quote the following key, entering it into the search string even if it would normally run
a command.

help key Show the list of search subcommands.

other keys If in incremental mode, exit the search, then execute the key normally. If not incre-
mental mode, edit the search string.

Figure 4.1: The search subcommands work in all search and replace commands.

The forward-search-again and reverse-search-again commands search forward and backward
(respectively) for the last-searched-for search string, without prompting. The search-again command
searches in the same direction as before for the same search string.

The search-region command restricts searching to the current region, which will be highlighted during
the search command.

If you highlight a region before searching, Epsilon uses it as an initial search string if it’s not very long.
Set the search-in-region variable to make Epsilon instead restrict matches it finds to the highlighted
region, like the search-region command. Also see the search-defaults-from variable.

You can change the function of most keys in Epsilon by rebinding them (see page 147). But Epsilon
doesn’t implement the searching command keys listed above with the normal binding mechanism. The EEL
code for searching refers directly to the keys Ctrl-C, Ctrl-W, Ctrl-T, Ctrl-O, Ctrl-Q, (Enter), and (Esc), so to
change the function of these keys within searching you must modify the EEL code in the file search.e.
Epsilon looks at your current bindings to determine which keys to use as the help key and backspace key. It
looks at the abort _key variable to determine what to use as your abort key, instead of Ctrl-G. (See page
99.) Epsilon always recognizes Ctrl-S and Ctrl-R as direction keys, but you can set two variables
fwd-search-key and rev-search-key to key codes. These will then act as “synonyms” to Ctrl-S and
Ctrl-R, respectively.

When you select a searching command from the menu or tool bar (rather than via a command’s
keyboard binding), Epsilon for Windows runs the dialog-search or dialog-reverse-search command, to
display a search dialog.

Most of the keys described above also work in dialog-based searching. However, dialog searching is

46 Chapter 4. Commands by Topic

never incremental, so Ctrl-O doesn’t toggle incremental searching in a dialog. And Ctrl-Q doesn’t quote the
following character, because dialog searching doesn’t support directly entering special characters.

To match special characters in dialog-based searching, you can enable regular expression searching, and
then enter them using syntax like <Tab> or <#13>. See page 64. In replacement text, add a # first, as in
#<Newline> or #<#13>. See page 72.

Summary: Ctrl-S incremental-search
Ctrl-R reverse-incremental-search
Ctrl-Alt-S regex-search
Ctrl-Alt-R reverse-regex-search

string-search
reverse-string-search
search-again
forward-search-again
reverse-search-again
search-region
dialog-search
dialog-reverse-search
toggle-case-fold

Searching Multiple Files

Epsilon provides a convenient grep command that lets you search a set of files. The command prompts you
for a search string (all of the search options described above apply) and for a file pattern. By default, the
grep interprets the search string as a regular expression (see page 63). To toggle regular expression mode,
press Ctrl-T at any time while typing the search string. The command then scans the indicated files, puts a
list of matching lines in the grep buffer, then displays the grep buffer in the current window. Each line
indicates the file it came from.

With a numeric argument, this command searches through buffers instead of files. Instead of prompting
for a file name pattern, Epsilon prompts for a buffer name pattern, and only operates on those buffers whose
names match that pattern. Buffer name patterns use a simplified file name pattern syntax: * matches zero or
more characters, 7 matches any single character, and character classes like [a-z] may be used too. The
buffer-grep command is an equivalent way to search buffers, handy if you want to bind it to its own key.

When grep prompts for a file pattern, it shows you the last file pattern you searched inside square
brackets. You can press (Enter) to conveniently search through the same files again. (See the
grep-default-directory variable to control how Epsilon interprets this default pattern when the current
directory has changed.)

By default file patterns you type are interpreted relative to the current buffer’s file; see
grep-prompt-with-buffer-directory to change this. To repeat a file pattern from before, press
Alt-(Up) or Ctrl-Alt-P. (See page 28 for details.) You can use extended file patterns to search in multiple
directories; see page 128.

Epsilon skips over any file with an extension listed in grep-ignore-file-extensions; by default
some binary file types are excluded. It also skips over files matched by the grep-ignore-file-pattern
or grep-ignore-file-basename variables (the latter matched against just the base name of the file, not
its path, the former matched against the entire file name). The grep-ignore-file-types variable makes
grep skip over files that refer to devices, named pipes, or other sorts of special files. You can set the

4.2. Moving Around 47

use-grep-ignore-file-variables variable to zero temporarily to have Epsilon ignore all these
variables and search every matching file.

In a grep buffer, you can move around by using the normal movement commands. Most alphabetic keys
run special grep commands. The ‘N’ and ‘P’ keys move to the next and previous matches. The Alt-N and
Alt-P keys move to the next and previous files. Alt-] and Alt-[move to the next and previous searches.

You can easily go from the grep buffer to the corresponding locations in the original files. To do this,
simply position point on the copy of the line, then press (Space), (Enter), or ‘E’. The file appears in the
current window, with point positioned at the beginning of the matching line. Typing ‘1’ brings up the file in
a window that occupies the entire screen. Typing ‘2’ splits the window horizontally, then brings up the file in
the lower window. Typing ‘5 splits the window vertically, then brings up the file. Typing the letter 'O’
shows the file in the next window on the screen, without splitting windows any further. Typing ‘Z’ runs the
zoom-window command, then brings up the file.

When Epsilon wants to search a particular file as a result of a grep command, it first scans the buffers to
see if one of them contains the given file. If so, it uses that buffer. If the file doesn’t appear in any buffer,
Epsilon reads the file into a temporary buffer, does the search, then discards the buffer.

If you want Epsilon to always keep the files around in such cases, set the variable grep-keeps-files
to a nonzero value. In that case, grep will simply use the find-file command to get any file it needs to search.

By default, each invocation of grep appends its results to the grep buffer. If you set the variable
grep-empties-buffer to a nonzero value, grep will clear the grep buffer at the start of each invocation.
Also see the grep—-show-absolute-path variable to control the format of file names in the grep buffer,
and the wrap-grep variable to control whether grepping sets the current window to wrap long lines.

You can move from match to match without returning to the grep buffer. The Ctrl-X Ctrl-N command
moves directly to the next match. It does the same thing as switching to the grep buffer, moving down one
line, then pressing (Space) to select that match. Similarly, Ctrl-X Ctrl-P backs up to the previous match.

Actually, Ctrl-X Ctrl-N runs the next-position command. After a grep command, this command simply
calls next-match, which moves to the next match as described above. If you run a compiler in a subprocess,
however, next-position calls next-error instead, to move to the next compiler error message. If you use the
grep command again, or press (Space) in the grep buffer to select a match, or run next-match explicitly, then
next-position will again call next-match to move to the next match.

Similarly, Ctrl-X Ctrl-P actually runs previous-position, which calls either previous-error or
previous-match, depending upon whether you last ran a compiler or searched across files.

Summary: Alt-F7 grep
Ctrl-X Ctrl-N next-position
Ctrl-X Ctrl-P previous-position
next-match

previous-match

4.2.4 Bookmarks

Epsilon’s bookmark commands let you store the current editing position, so that you can easily return to it
later. To drop a bookmark at point, use the Alt-/ key. For each bookmark, Epsilon remembers the buffer and
the place within that buffer. Later, when you want to jump to that place, press Alt-J. Epsilon remembers the
last 10 bookmarks that you set with Alt-/. To cycle through the last 10 bookmarks, you can press Alt-J and
keep pressing it until you arrive at the desired bookmark.

48 Chapter 4. Commands by Topic

You can set a named bookmark with the Ctrl-X / key. The command prompts you for a letter, then
associates the current buffer and position with that letter. To jump to a named bookmark, use the Ctrl-X J
key. It prompts you for the letter, then jumps to that bookmark.

Instead of a letter, you can specify a digit (0 to 9). In that case, the number refers to one of the
temporary bookmarks that you set with the Alt-/ key. Zero refers to the last temporary bookmark, 1 to the
one before that, and so on.

Whenever one of these commands asks you to specify a character for a bookmark, you can get a list by
pressing ‘?’. Epsilon then pops up a list of the bookmarks you’ve defined, along with a copy of the line that
contains the bookmark. You can simply move to one of the lines and press (Enter) to select that bookmark.
In a list of bookmarks, press D to delete the highlighted bookmark.

The command list-bookmarks works like the Ctrl-X J key, but automatically pops up the list of
bookmarks to choose from. If you like, you can bind it to Ctrl-X J to get that behavior.

Summary: Alt-/ set-bookmark
Alt-J jump-to-last-bookmark
Cul-X/ set-named-bookmark
Cul-XJ jump-to-named-bookmark

list-bookmarks

425 Tags

Epsilon provides a facility to remember which file defines a particular subroutine or procedure. This can
come in handy if your program consists of several source files. Epsilon can remember this kind of
information for you by using “tags”. A tag instructs Epsilon to look for a particular function at a certain
position in a certain file.

The goto-tag command on Ctrl-X (Period) prompts for the name of a function and jumps immediately
to the definition of the routine. You can use completion (see page 26) while typing the tag name, or press ‘7’
to select from a list of tags. (Epsilon also shows the defining file of each tag.)

If you don’t give a name, goto-tag goes to the next tag with the same name as the last tag you gave it. If
the same tag occurs several times (for example, if you tag several separate files that each define amain ()
function), use this to get to the other tag references, or press ‘?° after typing the tag name to select the
correct file from a list. If you give goto-tag a nonzero numeric argument, it goes to the next tag without even
asking for a name. When there are several instances of a single tag, you can also use Ctrl-(NumPlus) and
Ctrl-(NumMinus) to move among them.

The pluck-tag command on Ctrl-X (Comma) first retrieves the routine name adjacent to or to the right
of point, then jumps to that routine’s definition.

If the file containing the definition appears in a window already, Epsilon will change to that window.
Otherwise, Epsilon uses the find-file command to read the file into a buffer and displays it in the current
window. Then Epsilon jumps to the definition, positioning its first line near the top of the window. You can
set the window line to receive the first line of the definition via the show-tag-1ine variable. It says how
many lines down the definition should go.

You can tell Epsilon to display the definition in a particular window, instead of letting Epsilon decide,
by running goto-tag or pluck-tag with a numeric prefix argument of zero. Then these commands will prompt
for a key to indicate the window. Press an arrow key to display the definition in the next window in that
direction. Press n or p to display the definition in the next or previous window in the window order. Type the
period character . to force the definition to appear in the current window. Press 2 or 5 to split the current

4.2. Moving Around 49

window horizontally or vertically, respectively, and display the definition in the new window, or 1 to delete
all windows but the current one, or z to run the zoom-window command first.

Before Epsilon moves to the tag, it sets a temporary bookmark at your old position, just like the
set-bookmark command on Alt-/. After goto-tag or pluck-tag, press Alt-J or Ctrl-(NumStar) to move back to
your previous position.

Normally, you have to tell Epsilon beforehand which files to look in. The tag-files command on Ctrl-X
Alt-(Period) prompts for a file name or file pattern such as *.c and makes a tag for each routine in the file. It
knows how to recognize routines in C, C++, Java, Perl, Visual Basic, Python, PHP and many other
languages. (Using EEL, you can teach Epsilon to tag additional languages. See page 499.) If you tag a
previously tagged file, the new tags replace all the old tags for that file. You can use extended file patterns to
tag files in multiple directories; see page 128. To easily tag just the current file, press Alt-g at the prompt.
When Epsilon can’t find a tag, it tries retagging the current file before giving up; that means if your program
is confined to one file, you don’t have to tag it first. Set tag-ask-before-retagging nonzero if you want
Epsilon to ask first.

In Perl, PHP, Visual Basic, and Python, Epsilon tags subroutine definitions. In C, C++, Java, EEL and
other C-like languages, tag-files normally tags subroutine and variable definitions, typedef definitions,
structure and union member and tag definitions, enum constants, and #def ine constants. But it doesn’t tag
declarations (variables that use extern, function declarations without a body). With a numeric prefix
argument, Epsilon includes these too. (Typically you’d do this for header files when you don’t have source
code for the function definitions—system files and library files, for instance.)

You can also set up tag-files to include declarations by default, by setting the tag-declarations
variable. If zero (the default), tag-files only tags definitions. If one, Epsilon tags function declarations as
well. If two, Epsilon tags variable declarations (which use the extern keyword). If three, Epsilon tags both
types of declarations. Using a prefix argument with tag-files temporarily sets tag-declarations to three,
so it tags everything it can. You can also set the tag-which-items variable to make tagging skip certain
types of items, such as structure tag names or #define constants. Set tag-c-preprocessor-skip-pat to
make Epsilon skip certain #if blocks when tagging C mode files.

Set tag-case-sensitive nonzero if you want tagging to consider MAIN, Main and main to be
distinct tags. By default, typing “main” will find any of these.

Epsilon can maintain separate groups of tags, each in a separate file. The select-tag-file command on
Ctrl-X Alt-(Comma) prompts for the name of a tag file, and uses that file for tag definitions.

When Epsilon needs to find a tag file, it searches for a file in the current directory, then in its parent
directory, then in that directory’s parent, and so forth, until it reaches the root directory or finds a file
“default.tag”. If Epsilon finds no file with that name, it creates a new tag file in the current directory. To
force Epsilon to create a new tag file in the current directory, even if a tag file exists in a parent directory, use
the select-tag-file command. Once Epsilon loads a tag file, it continues to use that tag file until you use the
select-tag-file command to select a new one, or delete the buffer named “-~tags” (causing Epsilon to search
again the next time you use a tagging command).

You can set the variable initial-tag-file to a relative pathname like “myfile.tag”, if you want
Epsilon to search for that file, or you can set it to an absolute pathname if you want Epsilon to use the same
tag file no matter which directory you use.

The tag system can also use .bsc files from Microsoft Visual Studio 4.1 and later. To use .bsc files, you
must set your compiler to generate them, then use the Alt-x configure-epsilon command to download and
install the DLL file that matches your compiler version. See page 50 for details. Finally, use the
select-tag-file command on Ctrl-X Alt-(Comma) to select your .bsc file.

When Epsilon uses a .bsc file, the commands tag-files, retag-files, clear-tags, sort-tags, and the variables
tag-case-sensitive, tag-relative, want-sorted-tags, and tag-by-text do not apply. See
Microsoft compiler documentation for information on generating .bsc and .sbr files.

50 Chapter 4. Commands by Topic

The retag-files command makes Epsilon rescan all the files represented in the current tag file and
generate a new set of tags for each, replacing any prior tags. The clear-tags command makes Epsilon forget
about all the tags in the current tag file. See the tag-options variable if you want the tag-files command to
clear old tags automatically. The untag-files command displays a list of all files mentioned in the current tag
file; you can edit the list by deleting any file names that shouldn’t be included, and when you press Ctrl-X
Ctrl-Z, Epsilon will forget all tags that refer to the file names you deleted.

When Epsilon records a tag, it stores the character position and the text of the line at the tag position. If
the tag doesn’t appear at the remembered character offset, Epsilon searches for the defining line. And if that
doesn’t work (perhaps because its defining line has changed) Epsilon retags the file and tries again. This
means that once you tag a file, it should rarely prove necessary to retag it, even if you edit the file. To save
space in the tag file, you can have Epsilon record only the character offset, by setting the variable
tag-by-text to zero. Because this makes Epsilon’s tagging mechanism faster, it’s a good idea to turn off
tag-by-text before tagging any very large set of files that rarely changes.

By default, Epsilon sorts the tag list whenever it needs to display a list of tag names for you to choose
from. Although Epsilon tries to minimize the time taken to sort this list, you may find it objectionable if you
have many tags. Instead, you can set the want-sorted-tags variable to 0, and sort the tags manually,
whenever you want, using the sort-tags command. You can also tell Epsilon not to automatically save its tag
file by setting the auto-save-tags variable to zero.

Epsilon normally stores file names in its tag file in relative format, when possible. This means if you
rename or copy a directory that contains some source files and a tag file for them, the tag file will still work
fine. If you set the variable tag-relative to 0, Epsilon will record each file name with an absolute
pathname instead.

Summary: Ctrl-X (Period) goto-tag
Ctrl-X (Comma) pluck-tag
Ctrl-X Alt-(Period) tag-files
Ctrl-X Alt-(Comma) select-tag-file
Ctrl-(NumPlus) next-tag
Ctrl-(NumMinus) previous-tag
retag-files
clear-tags
untag-files
sort-tags

4.2.6 Source Code Browsing Interface

Epsilon can access source code browsing data generated by Microsoft compilers.

To set this up, first you must make sure your compiler generates such data, in the form of a .bsc file.
From Visual Studio, ensure the “Generate browse info” option (Project/Settings, on the C/C++ tab in the
General category) and the “Build browse info file” option (Project/Settings, on the Browse Info tab are both
enabled. Or if you build from the command line, compile with the /FR or /Fr flag to generate .sbr files, then
use the bscmake utility to combine the .sbr files into a .bsc file.

Next, set up Epsilon to use the generated browser file. To do this, run the Alt-x configure-epsilon
command and select the option to install source code browser support. This retrieves a DLL file from
Microsoft’s web site and installs it. Or you can install the necessary DLL manually; see
http://www.lugaru.com/links.html#bsc for details.

4.2. Moving Around 51

You can use the browser database only for source code browsing, or you can tell Epsilon to use it for
tagging as well, instead of using its own tagging methods. To have Epsilon use the same browser database
file for both purposes, use the select-tag-file command on Ctrl-X Alt-(Comma) to select your .bsc file. To
use Epsilon’s built-in tagging, and utilize the browser database only for source code browsing, select your
.bsc file with the select-browse-file command, which sets the browser—-file variable.

Once you’ve set up source code browsing, press Ctrl-(NumSlash) (using the / key on the numeric
keypad) to run the browse-symbol command. It will prompt for the name of a symbol (the name of a
function, variable, macro, class, or similar), using the symbol at point as the default. Then it will set a
temporary bookmark at your old position, just like the set-bookmark command on Alt-/. (After using
browse-symbol to navigate to a different part of your code, you can use Alt-J or Ctrl-(NumStar) to move
back to your original location.) Finally, it builds a #symbols# buffer showing all available information on
the symbol.

The #symbols# buffer contains a header section, followed by one section for each distinct use of the
symbol. For instance, if you use the name “cost” for a function, and also use it elsewhere as a local variable
name, and as a structure name somewhere else, there will be three sections, one for each use.

Browser File: c:\Project\project.bsc

Symbol: gsort

Filter all but: Var Func Macro Type Class

Filter all Uses/UsedBy but: Var Func Macro Type Class

gsort (public function) is defined at:

gsort (public function) is used at:

- C:\Program Files\Microsoft Visual Studio\VC98\include\stdlib.h(302):

- _CRTIMP void __cdecl gsort(void *, size_t, size_t, int (__cdecl *)
- prep_env.c(79): gsort(order, cnt, sizeof (char *), env_compare);

- token.cpp(174): gsort(le, sizeX + sizeY, sizeof(line_entry), hash_cmp);
gsort (public function) is used by:

- make_proc_env (public function)

- tokenize(int *,int *) (static function)

The header section displays the name of the .bsc file used to generate the listing and the symbol being
displayed. It also shows the current filters, which may be used to hide certain uses of a symbol.

Next you will see a list of those lines in your source code that define the specified symbol, followed by
those lines that reference it. In the example above, gsort (), a library function, isn’t defined within the
project source code, so its “is defined at” section is empty. It’s defined in a standard header file, and called
from two places in the project source code. You can position to any of these source code lines and press
(Enter), or double-click the line, and Epsilon will go to the corresponding source file and line.

In the following section, you will see a list of functions that use the gsort () function. You can look up
any one of these symbol names with (Enter) or double-clicking, and Epsilon will display the symbol listing
for that symbol, replacing the current listing. Afterwards, press the L key to return to viewing the original
symbol. Repeated presses go to earlier symbols. With a numeric argument, the L key displays a list of
recently-viewed symbols; you can select one and have it displayed again.

If the symbol has a definition within the current project, the next section will show the functions and
variables it uses in its definition.

You can set filters, as shown in the header section, to skip over certain kinds of definitions and uses. For
instance, if gsort were the name of a macro as well as a function, you could use the first filter to see only
the macro uses by pressing f. The second filter controls which symbols appear in the uses/used-by section;

52 Chapter 4. Commands by Topic

press b to set it. You can also set the filters by pressing (Enter) while on the corresponding “Filter:” line in
the browser buffer. These set the browser-filter and browser-filter-usedby variables.

The browser-options variable lets you omit some of the above sections, or simplify the data shown
in other ways, to make browsing quicker. The browse-current-symbol command is a variation on
browse-symbol that doesn’t prompt for a symbol name, but uses the name at point without prompting.

Summary: Ctrl-(NumSlash) browse-symbol
browse-current-symbol
Browse mode only: f browse-set-filter
Browse mode only: b browse-set-usedby-filter

select-browse-file

4.2.7 Comparing

The compare-windows command on Ctrl-F2 finds differences between the contents of the current buffer and
that displayed in the next window on the screen. If called while in the last window, it compares that window
with the first window. The comparison begins at point in each window. Epsilon finds the first difference
between the buffers and moves the point to just before the differing characters, or to the ends of the buffers if
it finds no difference. It then displays a message in the echo area reporting whether or not it found a
difference.

If you invoke compare-windows again immediately after it has found a difference, the command will try
to resynchronize the windows by moving forward in each window until it finds a match of at least
resynch-match-chars characters. It doesn’t necessarily move each window by the same amount, but
instead finds a match that minimizes the movement in the window that it moves the most. It then reports the
number of characters in each window it skipped past.

Normally compare-windows treats one run of space and tab characters the same as any other run, so it
skips over differences in horizontal whitespace. You can set the compare-windows-ignores-space
variable to change this.

The diff command also compares the buffers in two windows, but it will compare and resynchronize
over and over from the beginning to the end of each buffer, producing a report that lists all differences
between the two buffers. It operates line-by-line rather than character-by-character.

When resynchronizing, diff believes it has found another match when diff-match-lineslinesina
row match, and gives up if it cannot find a match within diff-mismatch-1lines lines. By default, diff
resynchronizes when it encounters three lines in a row that match. Normally Epsilon uses a smarter
algorithm that’s better at finding a minimum set of differences. With this algorithm,
diff-mismatch-linesisn’t used. But because this algorithm becomes very slow when buffers are large,
it’s only used when at least one of the buffers contains fewer than diff-precise-1imit bytes (by default
4 MB).

The diff command reports each difference with a summary line and then the text of the differing lines.
The summary line consists of two line number ranges with a letter between them indicating the type of
change: ‘a’ indicates lines to add to the first buffer to match the second, ‘d’ indicates lines to delete, and ‘c’
indicates lines to change. For example, a summary line in the diff listing of “20,30c23,29” means to remove
lines 20 through 30 from the first buffer and replace them with a copy of lines 23 through 29 from the
second buffer. “11a12” means that adding line 12 from the second buffer right after line 11 in the first buffer
would make them identical. “11,13d10” means that deleting lines 11, 12 and 13 from the first buffer (which
would appear just after line 10 in the second) would make them identical.

4.2. Moving Around 53

After each summary line, diff puts the lines to which the summary refers. The diff command prefixes
lines to delete from the first buffer by “<” and lines to add by “>”.

The visual-diff command is like diff but uses colors to show differences. It constructs a new buffer that
contains all the lines of the two buffers. Lines from the first buffer that don’t appear in the second are
displayed with a red background. Lines in the second buffer that don’t appear in the first have a yellow
background. Lines that are the same in both buffers are colored normally.

This command also does character-by-character highlighting for each group of changed lines. Instead
of simply indicating that one group of lines was replaced by another, it shows which portions of the lines
changed and which did not, by omitting the red or yellow background from those characters. You can set the
variables diff-match-characters and diff-match-characters-1imit to alter or turn off this
behavior.

In a visual-diff buffer, the keys Alt-(Down) and Alt-] move to the start of the next changed or common
section. The keys Alt-(Up) and Alt-[move to the previous change or common section.

The merge-diff command is another variation on diff that’s useful with buffers in C mode. It marks
differences by surrounding them with #ifdef preprocessor lines, first prompting for the #ifdef variable name
to use. The resulting buffer receives the mode and settings of the first of the original buffers. The marking is
mechanical, and doesn’t parse the text being marked off, so it may produce invalid code. For example, if an
#if statement differs between the two buffers, the result will contain improperly nested #if statements like
this:

#ifndef DIFFVAR

#if DOSVERSION
#else // DIFFVAR

#if MSDOSVERSION
#endif // DIFFVAR

Therefore, you should examine the output of merge-diff before trying to compile it.

The commands diff, visual-diff, and merge-diff all produce their output in a buffer named #diff#. With a
numeric argument, they prompt instead for the destination buffer name.

The compare-to-prior-version command uses visual-diff to show the differences between the current
version of a buffer and the one saved on disk. It can also compare the current version with the version prior
to a certain number of editing operations. It prompts for the number of editing operations; entering zero
makes it compare the current buffer to the version of it on disk. The command can display its results using
merge-diff or diff instead of visual-diff; see the compare-to-prior-version-style variable.

Like compare-windows and diff, the compare-sorted-windows command compares the contents of the
current buffer with that displayed in the next window on the screen. Use it when you have (for example) two
lists of variable names, and you want to find out which variables appear on only one or the other list, and
which appear on both. This command assumes that you sorted both the buffers. It copies all lines appearing
in both buffers to a buffer named “inboth”. It copies all lines that appear only in the first buffer to a buffer
named “only1”, and lines that appear only in the second to a buffer named “only2”.

The unig command goes through the current buffer and looks for adjacent identical lines, deleting the
duplicate copies of each repeated line and leaving just one. It doesn’t modify any lines that only occur once.
This command behaves the same as the Unix command of the same name.

The keep-unique-lines command deletes all copies of any duplicated lines. This command acts like the
Unix command “uniq -u”.

The keep-duplicate-lines command deletes all lines that only occur once, and leaves one copy of each
duplicated line. This command acts like the Unix command “uniq -d”.

The following table shows how sample text would be modified by each of the above commands.

54 Chapter 4. Commands by Topic

Sample text | Uniq | Keep-duplicate-lines | Keep-unique-lines

dog dog dog cat

dog cat horse rabbit

cat horse dog

horse rabbit

horse dog

horse

rabbit

dog

Summary: Ctrl-F2, Ctrl-X C compare-windows

compare-sorted-windows
diff
visual-diff
visual-diff-mode
merge-diff
compare-to-prior-version
uniq

keep-unique-lines

keep-duplicate-lines
Visual Diff only: Alt-], Alt-(Down) next-difference
Visual Diff only: Alt-[, Alt-(Up) previous-difference

4.3 Changing Text
4.3.1 Inserting and Deleting

When you type most alphabetic or numeric keys, they appear in the buffer before point. Typing one of these
keys runs the command normal-character, which simply inserts the character that invoked it into the buffer.

When you type a character bound to the normal-character command, Epsilon inserts the character
before point, so that the cursor moves forward as you type characters. Epsilon can also overwrite as you
type. The overwrite-mode command, bound to the (Ins) key, toggles overwriting for the current buffer. If
you give it a nonzero numeric argument (for example, by typing Ctrl-U before invoking the command, see
page 25), it doesn’t toggle overwriting, but turns it on. Similarly, a numeric argument of zero always turns
off overwriting. Overwriting will occur for all characters except newline, and overwriting never occurs at the
end of a line. In these cases the usual insertion will happen. The buffer-specific variable over-mode
controls overwriting.

The Ctrl-Q key inserts special characters, such as control characters, into the current buffer. It waits for
you to type a character, then inserts it. This command ignores keys that don’t represent characters, such as
(Home) or F3. If you “quote” an Alt key in this way, Epsilon inserts the corresponding character with its
high bit on. You can use this command for inserting characters like Ctrl-Z that would normally execute a
command when typed.

Sometimes you may want to insert a character whose numeric ASCII value you know, but you may not
know which keystroke that character corresponds to. Epsilon provides an insert-ascii command on Alt-# for
this purpose. It prompts you for a numeric value, then inserts the character with that value into the buffer.
By default, the command interprets the value in base 10. You can specify a hexadecimal value by prefixing

4.3. Changing Text 55

the characters “0x” to the number, or an octal value by prefixing the character “00” to the number, or a
binary value by prefixing “Ob”. For example, the numbers “87”, “0x57”, “00127”, and “Ob1010111” all
refer to the same number, and they all would insert a “W” character if given to the insert-ascii command.

You can also use the name of a Unicode character inside angle brackets, like “<square root>”, with
Alt-#. Press 7 to see a list of characters with their Unicode names. You can use completion on character
names like this, and search in the list of names as usual.

In most environments you can type graphics characters by holding down the Alt key and typing the
character’s value on the numeric keypad, but see the alt-numpad-keys variable. In some environments,
Epsilon will automatically quote the character so that it’s inserted in the buffer and not interpreted as a
command. (You may need to type a Ctrl-Q first to quote the character in other environments.)

The Ctrl-O command inserts a newline after point (or, to put it another way, inserts a newline before
point as usual, then backs up over it). Use this command to break a line when you want to insert new text in
the middle, or to “open” up some space after point.

The (Backspace) key deletes the character before point, and the (Del) key deletes the character after
point. In other words, (Backspace) deletes backwards, and (Del) deletes forwards. These commands usually
do not save deleted characters in the kill ring (see the next section).

If you prefix these commands with a numeric argument of n, they will delete n characters instead of
one. In that case, you can retrieve the deleted text from the kill ring with the Ctrl-Y key (see the next
section).

If (Backspace) or (Del) follows one of the kill commands, the deleted character becomes part of the
text removed by the kill command. See the following section for information on the kill commands, and the
delete-options variable to change this behavior.

The buffer-specific variable delete-hacking-tabs makes (Backspace) operate differently when
deleting tabs or spaces. If 1, when (Backspace) deletes a tab, it first turns the tab into the number of spaces
necessary to keep the cursor in the same column, then deletes one of the spaces. If 2, when (Backspace)
deletes a space, it deletes additional spaces and tabs until it reaches the previous tab column. The first setting
makes (Backspace) treat tabs more like spaces; the second makes it treats spaces more like tabs. Other bits
in the variable limit the circumstances where (Backspace) does this; see the variable’s documentation for
details.

The key Alt-\ deletes spaces and tabs surrounding point.

The Ctrl-X Ctrl-O command deletes empty lines adjacent to point, or lines that contain only spaces and
tabs, turning two or more such blank lines into a single blank line. Ctrl-X Ctrl-O deletes a lone blank line. If
you prefix a numeric argument of n, exactly n blank lines appear regardless of the number of blank lines
present originally. With a highlighted region, the command does this at every sequence of one or more blank
lines throughout the region.

Summary: Ctrl-Q quoted-insert
Alt-# insert-ascii
Ctrl-O open-line
Ctrl-H, (Backspace) backward-delete-character
Ctrl-D, (Del) delete-character
Alt-\ delete-horizontal-space
Ctrl-X Ctrl-O delete-blank-lines
“normal keys” normal-character

(Ins) overwrite-mode

56 Chapter 4. Commands by Topic

4.3.2 The Region, the Mark, and Killing

Epsilon has many commands to erase characters from a buffer. Some of these commands save the erased
characters away in a special group of buffers called kill buffers, and some do not.

In Epsilon’s terminology, to kill means to delete text and save it away in a kill buffer, and to delete
means simply to remove the text and not save it away. Any consecutive sequence of killing commands will
produce a single block of saved text. The Ctrl-Y command then yanks back the entire block of text, inserting
it before point. (Even when Epsilon deletes text and doesn’t save it, you can usually use the undo command
to recover the text. See page 98.)

The Ctrl-K command kills to the end of the line, but does not remove the line separator. At the end of a
line, though, it kills just the line separator. Thus, use two Ctrl-K’s to completely remove a nonempty line.
Give this command a numeric argument of n to kill exactly n lines, including the line separators. If you give
the Ctrl-K command a negative numeric argument, —n, the command kills from the beginning of the
previous nth line to point.

The kill-current-line command is an alternative to Ctrl-K. It kills the entire line in one step, including the
line separator. The kill-to-end-of-line command kills the rest of the line. If point is at the end of the line, it
does nothing. In Brief mode Epsilon uses these two commands in place of the kill-line command that’s
normally bound to Ctrl-K.

The commands to delete single characters will also save the characters if you give them a numeric
argument (to delete that number of characters) or if they follow a command which itself kills text.

Several Epsilon commands operate on a region of text. To specify a region, move to either end of the
region and press the Ctrl-@ key or the Ctrl-(Space) key. This sets the mark to the current value of point.
Then move point to the other end of the region. The text between the mark and point specifies the region.

When you set the mark with Ctrl-@, Epsilon turns on highlighting for the region. As you move point
away from the mark, the region appears in a highlighted color. This allows you to see exactly what text a
region-sensitive command would operate upon. To turn the highlighting off, type Ctrl-X Ctrl-H. The Ctrl-X
Ctrl-H command toggles highlighting for the region. If you prefix a nonzero numeric argument, it turns
highlighting on; a numeric argument of zero turns highlighting off.

You can also check the ends of the region with the Ctrl-X Ctrl-X command. This switches point and
mark, to let you see the other end of the region. Most commands do not care whether point (or mark) refers
to the beginning or the end of the region.

The mark-whole-buffer command on Ctrl-X H provides a quick way to set point and mark around the
entire buffer.

Another way to select text is to hold down the Shift key and move around using the arrow keys, or the
keys (Home), (End), (PageUp), or (PageDown). Epsilon will select the text you move through. The
shift-selects variable controls this feature.

The Ctrl-W command kills the region, saving it in a kill buffer. The Ctrl-Y command then yanks back
the text you’ve just killed, whether by the Ctrl-W command or any other command that kills text. It sets the
region around the yanked text, so you can kill it again with a Ctrl-W, perhaps after adjusting the region at
either end. The Alt-W command works like Ctrl-W, except that it does not remove any text from the buffer;
it simply copies the text between point and mark to a kill buffer.

Each time you issue a sequence of killing commands, Epsilon saves the entire block of deleted text as a
unit in one of its kill buffers. The Ctrl-Y command yanks back the last of these blocks. To access the other
blocks of killed text, use the Alt-Y command. It follows a Ctrl-Y or Alt-Y command, and replaces the
retrieved text with an earlier block of killed text. Each time you press Alt-Y, Epsilon substitutes a block
from another kill buffer, cycling from most recent back through the oldest, and then around to the most
recent again.

4.3. Changing Text 57

In normal use, you go to the place you want to insert the text and issue the Ctrl-Y command. If this
doesn’t provide the right text, give the Alt-Y command repeatedly until you see the text you want. If the text
you want does not appear in any of the killed blocks, you can get rid of the block with Ctrl-W, since both
Ctrl-Y and Alt-Y always place point and mark around the retrieved block.

By default, Epsilon provides ten kill buffers. You can set the variable kill-buffers if you want a
different number of kill buffers. Setting this variable to a new value makes Epsilon throw away the contents
of all the kill buffers the next time you execute a command that uses kill buffers.

The Alt-Y command doesn’t do anything if the region changed since the last Ctrl-Y or Alt-Y, so you
can’t lose text with a misplaced Alt-Y. Neither of these commands changes the kill buffers themselves. The
Alt-Y command uses the undo facility, so if you’ve disabled undo, it won’t work.

Epsilon can automatically reindent yanked text. By default it does this in C mode buffers. See page 75
for details. If you invoke Ctrl-Y or Alt-Y with a negative numeric prefix argument, by typing Alt-(Minus)
Ctrl-Y for example, the command won’t reindent the yanked text, and will insert one copy. (Providing a
positive numeric prefix argument makes Epsilon yank that many copies of the text. See page 145.)

Each time you issue a sequence of killing commands, all the killed text goes into one kill buffer. When
a killing command follows a non-killing command, the text goes into a new kill buffer (assuming you
haven’t set up Epsilon to have only one kill buffer). You may sometimes want to append a new kill to the
current kill buffer, rather than using the next kill buffer. That would let you yank all the text back at once.
The Ctrl-Alt-W command makes an immediately following kill command append to a kill buffer instead of
moving to a new one.

The Ctrl-Y command can come in handy when entering text for another command. For example,
suppose the current buffer contains a line with “report.txt” on it, and you now want to read in the file with
that name. Simply kill the line with Ctrl-K and yank it back (so as not to change the buffer) then give the
Ctrl-X Ctrl-F command (see page 111) to read in a file. When prompted for the file name, press Ctrl-Y and
the text “report.txt” appears as if you typed it yourself.

Pressing a self-inserting key like ‘j” while text is highlighted normally deletes the highlighted selection,
replacing it with the key. Pressing (Backspace) simply deletes the text. You can disable this behavior by
setting the variable typing-deletes-highlight to zero. If you turn off this feature, you may also wish to
set the variable insert-default-response to zero. At many prompts Epsilon will insert a highlighted
default response before you start typing, if this variable is nonzero. You may also wish to set
typing-hides-highlight if you’'ve disabled typing-deletes-highlight, so pressing a self-inserting
key turns off highlighting but doesn’t delete anything.

You can use the delete-region command to delete the current region without saving it in a kill buffer;
this is especially useful if you’ve set (Backspace) so it doesn’t delete highlighted text.

In addition to the above commands which put the text into temporary kill buffers, Epsilon provides
commands to make more permanent copies of text. The Ctrl-X X key copies the text in the region between
point and mark to a permanent buffer. The command prompts you for a letter (or number), then associates
the text with that letter. Thereafter, you can retrieve the text using the Ctrl-X Y key. That command asks you
for the letter, then inserts the corresponding text before point.

Summary: Ctrl-@, Alt-@ set-mark
Cul-X Ctrl-H highlight-region
Cul-X Ctrl-X exchange-point-and-mark
Ctrl-K kill-line
Cul-W kill-region
Alt-W copy-region

Ctrl-Y yank

58 Chapter 4. Commands by Topic

Alt-Y yank-pop
Curl-Alt-W append-next-kill
Ctrl-X X copy-to-scratch
Cul-X'Y insert-scratch
Cul-X H mark-whole-buffer

kill-current-line
kill-to-end-of-line
delete-region

4.3.3 Clipboard Access

In Windows, Epsilon’s killing commands interact with the Windows clipboard. Similarly, Epsilon for Unix
interacts with the X11 clipboard when running as an X program. You can kill text in Epsilon and paste it
into another application, or copy text from an application and bring it into Epsilon with the yank command.

All commands that put text on the kill ring will also try to copy the text to the clipboard, if the variable
clipboard-access is non-zero. You can copy the current region to the clipboard without putting it on the
kill ring using the command copy-to-clipboard.

The yank command copies new text from the clipboard to the top of the kill ring. It does this only when
the clipboard’s contents have changed since the last time Epsilon accessed it, the clipboard contains text, and
clipboard-access is non-zero. Epsilon looks at the size of the clipboard to determine if the text on it is
new, so it may not always notice new text. You can force Epsilon to retrieve text from the clipboard by using
the insert-clipboard command, which inserts the text on the clipboard at point in the current buffer.

If you prefer to have Epsilon ignore the clipboard except when you explicitly tell it otherwise, set
clipboard-access to zero. You can still use the commands copy-to-clipboard and insert-clipboard to work
with the clipboard. Unlike the transparent clipboard support provided by clipboard-access, these
commands will report any errors that occur while trying to access the clipboard. If transparent clipboard
support cannot access the clipboard for any reason, it won’t report an error, but will simply ignore the
clipboard. Epsilon also disables transparent clipboard support when running a keyboard macro, unless
clipboard-accessis 2.

When the buffer contains syntax-highlighted text, or other text with colors applied to it, you can have
Epsilon construct an HTML version of the text that preserves the coloring. You can then use it in a web
page, or further convert it using an external converter. Run the copy-formatting-as-html command to copy the
current region to the clipboard in HTML format.

By default, when the Win32 Console version of Epsilon puts characters on the clipboard, it lets
Windows translate the characters from the OEM character set to Windows ANSI, so that national characters
display correctly. Epsilon for Windows uses Windows ANSI like other Windows programs, so no translation
is needed. See the description of the clipboard-format variable to change this.

When retrieving text from the clipboard, Epsilon sometimes performs conversions to similar but more
basic characters. For instance, if you paste Unicode U+02DC SMALL TILDE, Epsilon replaces it with the
ASCII tilde character ~. It performs the opposite conversion when placing text on the clipboard, but only for
characters in the range 128—159. See the clipboard-convert-unicode variable for details.

On Mac OS X systems, Epsilon converts from Mac line termination conventions when you paste text.
The clipboard-convert-mac-lines variable controls this.

X11 has two different methods of transferring text between programs. The more modern method uses
the clipboard, and explicit commands for cutting and pasting text. This is what Epsilon’s commands for
killing and yanking use.

4.3. Changing Text 59

But an older method uses the “primary selection” to transfer text. Traditionally, selecting text with a
mouse sets the text as the primary selection, and the middle mouse button pastes that text into another
program.

In Epsilon the middle mouse button provides panning by default, but when you hold down Shift, it
inserts the primary selection instead. You can set the mouse-center-yanks variable to make the middle
mouse button always insert. Or you can use the yank-x-selection command to yank X’s primary selection
explicitly. Set the mouse-selection-copies variable to make selecting text with the mouse set the
primary selection. This also puts the text into one of Epsilon’s kill buffers.

If you mostly use programs that follow the older X11 convention, you can set Epsilon to do so as well.
Set the clipboard-format variable to 1. Then Epsilon’s cutting and pasting commands will use the
primary selection instead of the clipboard selection.

Summary: copy-to-clipboard
insert-clipboard
copy-formatting-as-html
yank-x-selection

4.3.4 Rectangle Commands

Epsilon regions actually come in four distinct types. Each type has a corresponding Epsilon command that
begins defining a region of that type.

Region Type | Command

Normal mark-normal-region
Line mark-line-region
Inclusive mark-inclusive-region

Rectangular | mark-rectangle

The commands are otherwise very similar. Each command starts defining a region of the specified type,
setting the mark equal to point and turning on highlighting. If Epsilon is already highlighting a region of a
different type, these commands change the type. If Epsilon is already highlighting a region of the same type,
these commands start defining a new region by setting mark to point again. (You can set the variable
mark-unhighlights to make the commands turn off the highlighting and leave the mark alone in this
case.)

The mark-normal-region command defines the same kind of region as the set-mark command described
in section 4.3.2. (The commands differ in that set-mark always begins defining a new region, even if another
type of region is highlighted on the screen. The mark-normal-region command converts the old region, as
described above.)

A line region always contains entire lines of text. It consists of the line containing point, the line
containing mark, and all lines between the two.

An inclusive region is very similar to a normal region, but an inclusive region contains one additional
character at the end of the region. A normal region contains all characters between point and mark, if you
think of point and mark as being positioned between characters. But if you think of point and mark as
character positions, then an inclusive region contains the character at point, the character at the mark, and all
characters between the two. An inclusive region always contains at least one character (unless point and
mark are both at the end of the buffer).

60 Chapter 4. Commands by Topic

A rectangular region consists of all columns between those of point and mark, on all lines in the buffer
between those of point and mark. The mark-rectangle command on Ctrl-X # begins defining a rectangular
region. In a rectangular region, point can specify any of the four corners of this rectangle.

Some commands operate differently when the current region is rectangular. Killing a rectangular region
by pressing the Ctrl-W key runs the command kill-rectangle. It saves the current rectangle in a kill buffer,
and replaces the rectangle with spaces, so as not to shift any text that appears to the right of the rectangle. To
remove the rectangle and the space it occupied, press Ctrl-U Ctrl-W. This shifts columns of text that
followed the rectangle to the left. (Also see the kill-rectangle-removes variable.)

The Alt-W key runs the command copy-rectangle. It also saves the current rectangle, but doesn’t
modify the buffer. (Actually, it may insert spaces at the ends of lines, or convert tabs to spaces, if that’s
necessary to reach the starting or ending column on one of the lines in the region. But the buffer won’t look
any different as a result of these changes. Most rectangle commands do this.)

The Ctrl-Alt-W key runs the command delete-rectangle. It removes the current rectangle, shifting any
text after it to the left. It doesn’t save the rectangle.

When you use the Ctrl-Y key to yank a kill buffer that contains a rectangle, Epsilon inserts the last
killed rectangle into the buffer at the current column, on the current and successive lines. It shifts existing
text to the right. If you’ve enabled overwrite mode, however, the rectangle replaces any existing text in those
columns. See the yank-rectangle-to-corner variable to set how Epsilon positions point and mark
around the yanked rectangle. You can use the Alt-Y key to cycle through previous kills as usual.

When yanking line regions, the yank-line-retains-position variable serves a similar purpose,
influencing where Epsilon positions the cursor.

The width of a tab character depends upon the column it occurs in. For this reason, if you use the
rectangle commands to kill or copy text containing tabs, and you move the tabs to a different column, text
after the tabs may shift columns. (For example, a tab at column 0 occupies 8 columns, but a tab at column 6
occupies only 2 columns.) You can avoid this problem by using spaces instead of tabs with the rectangle
commands.

The buffer-specific variable indent-with-tabs controls whether Epsilon does indenting with tabs or
only with spaces. Set it to 0 to make Epsilon always use spaces. This variable affects only future indenting
you may do; it doesn’t change your file. To replace the tabs in your file, use the untabify-buffer command.

Note that the bindings shown below for kill-rectangle, copy-rectangle, and delete-rectangle only apply
when there’s a highlighted rectangle.

Summary: Ctrl-X # mark-rectangle
Cul-W kill-rectangle
Alt-W copy-rectangle
Ctrl-Alt-W delete-rectangle

mark-line-region
mark-inclusive-region

4.3.5 Capitalization

Epsilon has commands that allow you to change the case of words. Each travels forward, looking for the end
of a word, and changes the case of the letters it travels past. Thus, if you give these commands while inside a
word, only the rest of the word potentially changes case.

The Alt-L key, lowercase-word, turns all the characters it passes to lower case. The Alt-U key,
uppercase-word, turns them all to upper case. The Alt-C key, capitalize-word, capitalizes a word by making

4.3. Changing Text 61

the first letter it travels past upper case, and all the rest lower case. All these commands position point after
the word operated upon.

For example, the Alt-L command would turn “wOrd” into “word”. The Alt-U command would turn it
into “WORD”, and the Alt-C command would turn it into “Word”.

These commands operate on the highlighted region, if there is one. If there is no highlighted region, the
commands operate on the next word and move past it, as described above. The commands work on both
conventional and rectangular regions.

Summary: Alt-C capitalize-word
Alt-L lowercase-word
Alt-U uppercase-word

4.3.6 Replacing

The key Alt-& runs the command replace-string, and allows you to change all occurrences of a string in the
rest of your document to another string. Epsilon prompts for the string to replace, and what to replace it with.
Terminate the strings with (Enter). After you enter both strings, Epsilon replaces all occurrences of the first
string after point with instances of the second string (but respecting any narrowing restriction; see page 166).

When entering the string to search for, you can use any of the searching subcommands described on
page 43: Ctrl-C toggles case-folding, Ctrl-W toggles word searching, and Ctrl-T toggles interpreting the
string as a regular expression.

To enter special characters in either the search or replace strings, use Ctrl-Q before each. Type Ctrl-Q
Ctrl-C to include a Ctrl-C character. Type Ctrl-Q Ctrl-J to include a (Newline) character in a search string or
replacement text. Press Alt-g when entering the replacement string to copy the search string.

The key Alt-R runs the command query-replace, which works like replace-string. Instead of replacing
everything automatically, however, the command positions point after each occurrence of the old string and
waits for you to press a key. You may choose whether to replace this occurrence or not:

y or Y or (Space) Replace it, go on to next occurrence.
n or N or (Backspace) Don’t replace it, go on to next occurrence.

! Replace all remaining occurrences. The replace-string command works like the query-replace command
followed by pressing ‘!” when it shows you the first match.

(Esc) Exit and leave point at the match in the buffer.

~ Back up to the previous match.

(Period) Replace this occurrence and then exit.

(Comma) Replace and wait for another command option without going on to the next match.

Ctrl-R Enter a recursive edit. Point and mark go around the match. You may edit arbitrarily. When you exit
the recursive edit with Ctrl-X Ctrl-Z, Epsilon restores the old mark, and the query-replace continues
from the current location.

Ctrl-G Exit and restore point to its original location.

Ctrl-T Toggle regular expression searching. See the next section for an explanation of regular expressions.

62 Chapter 4. Commands by Topic

Ctrl-W Toggle word searching.
Ctrl-C Toggle case folding.
? or help key Provide help, including a list of these options.

anything else Exit the replacement, staying at the current location, and execute this key as a command.

The command regex-replace operates like query-replace, but starts up in regular expression mode. See
page 71.

The command reverse-replace operates like query-replace, but moves backwards. You can also trigger
a reverse replacement by pressing Ctrl-R while entering the search text for any of the replacing commands.

If you invoke any of the replacing commands above with a numeric argument, Epsilon will use word
searching.

If you highlight a region before replacing, Epsilon uses it as an initial search string if it’s not very long.
Set the replace-in-region variable to make Epsilon instead restrict its replacements to the highlighted
region. Also see the search-defaults-from variable.

Replace commands preserve case. Epsilon examines the case of each match. If a match is entirely upper
case, or all words are capitalized, Epsilon makes the replacement text entirely upper case or capitalized, as
appropriate. Epsilon only does this when searching is case-insensitive, and neither the search string nor the
replace string contain upper case letters. For example, if you search for the regular expression
welcome |hello and replace it with greetings, Epsilon replaces HELLO with GREETINGS and
Welcome with Greetings. See the replace-by-case variable to alter the rules Epsilon uses. With a regular
expression replace, you can force parts of the replacement to a particular case; see page 72.

The file-query-replace command on Shift-F7 replaces text in multiple files. It prompts for the search
text, replacement text, and a file name which may contain wildcards. You can use extended file patterns to
replace in files from multiple directories; see page 128. Epsilon skips over any file with an extension listed
in grep-ignore-file-extensions or meeting other criteria, just like the grep command. See page 46 for
details. To search without replacing, see the grep command on page 46.

With a numeric argument, this command searches through buffers instead of files. Instead of prompting
for a file name pattern, Epsilon prompts for a buffer name pattern, and only operates on those buffers whose
names match that pattern. Buffer name patterns use a simplified file name pattern syntax: * matches zero or
more characters, 7 matches any single character, and character classes like [a-z] may be used too.

The command delete-matching-lines prompts for a regular expression pattern. It then deletes all lines
after point in the current buffer that contain the pattern. The similar command keep-matching-lines deletes
all lines except those that contain the pattern. As with any searching command, you can press Ctrl-T, Ctrl-W,
or Ctrl-C while typing the pattern to toggle regular expression mode, word mode, or case folding
(respectively).

When you select a replacing command from the menu or tool bar (rather than via a command’s
keyboard binding), Epsilon for Windows runs the dialog-replace or dialog-regex-replace command, to
display a replace dialog. Controls on the dialog replace many of the keys described above.

Summary: Alt-& replace-string
Alt-R, Alt-% query-replace
Shift-F7 file-query-replace
Alt-* regex-replace

reverse-replace
delete-matching-lines
keep-matching-lines

4.3. Changing Text 63

4.3.7 Regular Expressions

Most of Epsilon’s searching commands, described on page 43, take a simple string to search for. Epsilon
provides a more powerful regular expression search facility, and a regular expression replace facility.

Instead of a simple search string, you provide a pattern, which describes a set of strings. Epsilon
searches the buffer for an occurrence of one of the strings contained in the set. You can think of the pattern
as generating a (possibly infinite) set of strings, and the regex search commands as looking in the buffer for
the first occurrence of one of those strings.

The following characters have special meaning in a regex search: vertical bar, parentheses, plus, star,
question mark, square brackets, period, dollar, percent sign, left angle bracket (‘<’), and caret (‘~”). To
match them literally, they must be quoted; see page 64. See the following sections for syntax details and
additional examples.

abc|def Finds either abc or def.

(abc) Finds abc.

abc+ Finds abc or abcc or abcccor. . ..

abcx* Finds ab or abc or abcc or abcccor. . ..

abc? Finds ab or abc.

[abcx-z] Finds any single character of a, b, c, x, y, or z.

[~abcx-z] Finds any single character except a, b, ¢, %, y, or z.
Finds any single character except (Newline).

abc$ Finds abc that occurs at the end of a line.

~abc Finds abc that occurs at the beginning of a line.

%" abc Finds a literal ~abc.

<Tab> Finds a (Tab) character.

<#123> Finds the character with ASCII code 123.

<p:cyrillic> Finds any character with that Unicode property.

<alpha|1-5&!x-z> Finds any alpha character except x, y or z or digit 1-5.

<“c:*comment>printf Finds uses of printf that aren’t commented out.

<h:0d Oa 45> Finds char sequence with those hexadecimal codes.

Figure 4.2: Summary of regular expression characters.

PLAIN PATTERNS.

In a regular expression, a string that does not contain any of the above characters denotes the set that
contains precisely that one string. For example, the regular expression abc denotes the set that contains, as
its only member, the string ‘abc’. If you search for this regular expression, Epsilon will search for the string
‘abc’, just as in a normal search.

ALTERNATION.

To include more than one string in the set, you can use the vertical bar character. For example, the
regular expression abc | xyz denotes the set that contains the strings ‘abc’ and ‘xyz’. If you search for that
pattern, Epsilon will find the first occurrence of either ‘abc’ or ‘xyz’. The alternation operator (|) always
applies as widely as possible, limited only by grouping parentheses.

GROUPING.

You can enclose any regular expression in parentheses, and the resulting expression refers to the same

64 Chapter 4. Commands by Topic

set. So searching for (abc|xyz) has the same effect as searching for abc | xyz, which works as in the
previous paragraph. You would use parentheses for grouping purposes in conjunction with some of the
operators described below.

Parentheses are also used for retrieving specific portions of the match. A regular expression
replacement uses the syntax #3 to refer to the third parenthesized group, for instance. The find_group ()
function provides a similar function for EEL programmers. The special syntax (7:) provides grouping
just like (), but isn’t counted as a group when retrieving parts of the match in these ways.

CONCATENATION.

You can concatenate two regular expressions to form a new regular expression. Suppose the regular
expressions p and q denote sets P and Q, respectively. Then the regular expression pq denotes the set of
strings that you can make by concatenating, to members of P, strings from the set Q. For example, suppose
you concatenate the regular expressions (abc |xyz) and (def |ghi) to yield (abc|xyz) (def |ghi). From
the previous paragraph, we know that (abc|xyz) denotes the set that contains ‘abc’ and ‘xyz’; the
expression (def |ghi) denotes the set that contains ‘def’ and ‘ghi’. Applying the rule, we see that
(abclxyz) (def | ghi) denotes the set that contains the following four strings: ‘abcdef’, ‘abcghi’, ‘xyzdef’,
‘xyzghi’.

CLOSURE.

Clearly, any regular expression must have finite length; otherwise you couldn’t type it in. But because
of the closure operators, the set to which the regular expression refers may contain an infinite number of
strings. If you append plus to a parenthesized regular expression, the resulting expression denotes the set of
one or more repetitions of that string. For example, the regular expression (ab) + refers to the set that
contains ‘ab’, ‘abab’, ‘ababab’, ‘abababab’, and so on. Star works similarly, except it denotes the set of zero
or more repetitions of the indicated string.

OPTIONALITY.

You can specify the question operator in the same place you might put a star or a plus. If you append a
question mark to a parenthesized regular expression, the resulting expression denotes the set that contains
that string, and the empty string. You would typically use the question operator to specify an optional
subpart of the search string.

You can also use the plus, star, and question-mark operators with subexpressions, and with
non-parenthesized things. These operators always apply to the smallest possible substring to their left. For
example, the regular expression abc+ refers to the set that contains ‘abc’, ‘abec’, ‘abeec’, ‘abeecec’, and so
on. The expression a (bc) *d refers to the set that contains ‘ad’, ‘abcd’, ‘abcbed’, ‘abebebed’, and so on.
The expression a(b?c) *d denotes the set that contains all strings that start with ‘a’ and end with ‘d’, with
the inside consisting of any number of the letter ‘c’, each optionally preceded by ‘b’. The set includes such
strings as ‘ad’, ‘acd’, ‘abcd’, ‘abceecbed’.

Entering Special Characters

In a regular expression, the percent (‘%) character quotes the next character, removing any special meaning
that character may have. For example, the expression x%+ refers to the string ‘x+’, whereas the pattern x+

[R |

refers to the set that contains ‘x’, ‘xx’, ‘xxx’, and so on.

You can also quote characters by enclosing them in angle brackets. The expression x<+> refers to the
string ‘x+’, the same as x%+. In place of the character itself, you can provide the name of the character
inside the angle brackets. Figure 4.3 lists some of the character names Epsilon recognizes; you can also use
any character name in the Unicode standard, such as <Superscript two>.

4.3. Changing Text 65

<Comma> s <Nul> ~@ <Period> .
<Space> <Star> * <Plus> +
<Enter> M <Percent> % <Vbar> |
<Return> M <Lparen> (<Question> ?
<Newline> ~J <Rparen>) <Query> ?
<Linefeed> ~J <Langle> < <Caret> -
<Tab> °1 <Rangle> > <Dollar> $
<Bell> G <LSquare> [<Bang> !
<Backspace> "H <RSquare>] <Exclamation> !
<FormFeed> ~L <Lbracket> [<Quote> '
<Esc> ~[<Rbracket> 1] <SQuote> '
<Escape> ~[<Dot> . <DQuote> "
<Null> @ <Backslash> \ <Tilde> ~

Figure 4.3: Character mnemonics in regular expressions.

To search for the NUL character (the character with ASCII code 0), use the expression <Nul>, because
an actual NUL character may not appear in a regular expression.

Instead of the character’s name, you can provide its numeric value using the notation <#number>. The
sequence <#number> denotes the character with ASCII code number. For example, the pattern <#0>
provides another way to specify the NUL character, and the pattern abc<#10>+ specifies the set of strings
that begin with ‘abc’ and end with one or more newline characters (newline has ASCII value 10). You can
enter the value in hexadecimal, octal, or binary by prefixing the number with ‘0x’, ‘00’, or ‘Ob’, respectively.
For example, <#32>, <#0x20>, <#0040>, and <#0b100000> all yield a (Space) character (ASCII code 32).

Character Classes

In place of any letter, you can specify a character class. A character class consists of a sequence of
characters between square brackets. For example, the character class [adef] stands for any of the following
characters: ‘a’, ‘d’, ‘e’, or ‘f’.

In place of a letter in a character class, you can specify a range of characters using a hyphen: the
character class [a-m] stands for the characters ‘a’ through ‘m’, inclusively. The class [ae-gr] stands for
the characters ‘a’, ‘e’, ‘f’, ‘g’, or ‘r’. The class [a-zA-Z0-9] stands for any alphanumeric character.

To specify the complement of a character class, put a caret as the first character in the class. Using the
above examples, the class [“a-m] stands for any character other than ‘a’ through ‘m’, and the class
["a-zA-Z0-9] stands for any non-alphanumeric character. Inside a character class, only ~ (when it’s the
first character) and - have special meaning. All other characters stand for themselves, including plus, star,
question mark, etc.

If you need to put a right square bracket character in a character class, put it immediately after the
opening left square bracket, or in the case of an inverted character class, immediately after the caret. For
example, the class []1x] stands for the characters ‘]’ or ‘x’, and the class [~]x] stands for any character
other than ‘]’ or ‘x’.

To include the hyphen character - in a character class, it must be the first character in the class, except
for ~ and]. For example, the pattern [~]-q] matches any character except], -, or g.

Any regular expression you can write with character classes you can also write without character
classes. But character classes sometimes let you write much shorter regular expressions.

66 Chapter 4. Commands by Topic

The period character (outside a character class) represents any character except a (Newline). For
example, the pattern a. c matches any three-character sequence on a single line where the first character is
‘a’ and the last is ‘c’.

You can also specify a character class using a variant of the angle bracket syntax described in the
previous section for entering special characters. The expression <Comma | Period | Question> represents
any one of those three punctuation characters. The expression <a-z|A-Z| 7> represents either a letter or a
question mark, the same as [a-zA-Z] | <?>, for example. The expression <“Newline> represents any
character except newline, just as the period character by itself does.

You can also use a few character class names that match some common sets of characters.

Class Meaning

<digit> A digit, 0 to 9.

<alpha> A letter, according to isalpha().

<alphanum> | Either of the above.

<word> All of the above, plus the _ character.
<hspace> The same as <Space | Tab>.

<wspace> The same as <Space|Tab|Newline>.

<ascii> An ASCII character, one with a code below 128.
<any> Any character including <Newline>.

Figure 4.4: Character Class Names

You can match all characters with a particular Unicode property, using the syntax <p:hex-digit>.
After the p: part, you can put the name of a binary property as in p: ASCIIHexDigit, a script name as in
p:Cyrillic, or a category name as in p:Zs or p:L. Or you can put the name of an enumerated property, an
equal sign, and a value for that property, like p:block=Dingbatsor p:Line_break=Alphabetic. Case
isn’t significant in these names, and certain characters like hyphen and underscore are ignored in property
names.

You can combine character classes using addition, subtraction, or intersection. Addition means a
matching character can be in either of two classes, as in <alpha|digit> to match either alphabetic
characters or digits. Intersection means a matching character must be a member of both classes, as in
<p:HexDigit&p:numeric-type=decimal>, which matches characters with the HexDigit binary Unicode
property that also have a Numeric-Type property of Decimal. Subtraction means a matching character must
be a member of one class but not another, as in <p:currency-symbol&!dollar sign&!cent sign>
which matches all characters with the Currency-Symbol property except for the dollar sign and cent sign
characters.

More precisely, we can say that inside the angle brackets you can put one or more character “rules”,
each separated from the next by either a vertical bar | to add the rules together or & to intersect the rules.
Any rule may have a ! before it to invert that one rule, or you can put a ~ just after the opening < to invert
the entire expression and match its complement.

Each character rule may be a character specification or a range, a character class name from the table
above, or a Unicode property specification using the p: syntax above. A range means two character
specifications with a hyphen between them. And a character specification means either the name of a
character, or # and the numeric code for a character, or the character itself (for any character except >, |, -,
or (Nul)).

Separately, Epsilon recognizes the syntax <h:0d Oa 45> as a shorthand to search for a series of
characters by their hexadecimal codes. This example is equivalent to the pattern <#0x0d><#0x0a><#0x45>.

4.3. Changing Text 67

Regular Expression Examples

 The pattern if |else|for|do|while|switch specifies the set of statement keywords in C and EEL.

* The pattern c [ad] +r specifies strings like ‘car’, ‘cdr’, ‘caadr’, ‘caaadar’. These correspond to
compositions of the car and cdr Lisp operations.

¢ The pattern c [ad] [ad] 7 [ad] ? [ad] 7t specifies the strings that represent up to four compositions of
car and cdr in Lisp.

e The pattern [a-zA-Z] + specifies the set of all sequences of 1 or more letters. The character class part
denotes any upper- or lower-case letter, and the plus operator specifies one or more of those.

Epsilon’s commands to move by words accomplish their task by performing a regular expression
search. They use a pattern similar to [a-zA-Z0-9_]+, which specifies one or more letters, digits, or
underscore characters. (The actual pattern includes national characters as well.)

* The pattern (<Newline>|<Return>|<Tab>|<Space>)+ specifies nonempty sequences of the
whitespace characters newline, return, tab, and space. You could also write this pattern as
<Newline|Return|Tab|Space>+or as <Wspace|Return>+, using a character class name.

* The pattern /%* . *%*/ specifies a set that includes all 1-line C-language comments. The percent
character quotes the first and third stars, so they refer to the star character itself. The middle star
applies to the period, denoting zero or more occurrences of any character other than newline. Taken
together then, the pattern denotes the set of strings that begin with “slash star”, followed by any
number of non-newline characters, followed by “star slash”. You can also write this pattern as
/<Star>.*<Star>/.

¢ The pattern /%* (. | <Newline>)*%x*/ looks like the previous pattern, except that instead of ‘.”, we
have (. |<Newline>). So instead of “any character except newline”, we have “any character except
newline, or newline”, or more simply, “any character at all”. This set includes all C comments, with or
without newlines in them. You could also write this as /%*<Any>*%#/ instead.

* The pattern <"digit |a-f> matches any character except of one these: 0123456789abcdef.

* The pattern <alpha&!r&!x-z&!p:softdotted> matches all Latin letters exceptR, X, Y, Z, I and J
(the latter two because the Unicode property SoftDotted, indicating a character with a dot that can be
replaced by an accent, matches I and J). It also matches all non-Latin Unicode letters that don’t have
this property.

AN ADVANCED EXAMPLE.

Let’s build a regular expression that includes precisely the set of legal strings in the C programming
language. All C strings begin and end with double quote characters. The inside of the string denotes a
sequence of characters. Most characters stand for themselves, but newline, double quote, and backslash
must appear after a “quoting” backslash. Any other character may appear after a backslash as well.

We want to construct a pattern that generates the set of all possible C strings. To capture the idea that
the pattern must begin and end with a double quote, we begin by writing

"something"

We still have to write the something part, to generate the inside of the C strings. We said that the inside of a
C string consists of a sequence of characters. The star operator means “zero or more of something”. That
looks promising, so we write

68 Chapter 4. Commands by Topic

" (something) *"

Now we need to come up with a something part that stands for an individual character in a C string. Recall
that characters other than newline, double quote, and backslash stand for themselves. The pattern
<"Newline| " |\> captures precisely those characters. In a C string, a “quoting” backslash must precede the
special characters (newline, double quote, and backslash). In fact, a backslash may precede any character in
a C string. The pattern \ (. | <Newline>) means, precisely “backslash followed by any character”. Putting
those together with the alternation operator (1), we get the pattern <"Newline|" |\>|\ (. |<Newline>)
which generates either a single “normal” character or any character preceded by a backslash. Substituting
this pattern for the something yields

"(<"Newline|"[\>|\ (. [<Newline>))*"

which represents precisely the set of legal C strings. In fact, if you type this pattern into a regex-search
command (described below), Epsilon will find the next C string in the buffer.

Searching Rules

Thus far, we have described regular expressions in terms of the abstract set of strings they generate. In this
section, we discuss how Epsilon uses this abstract set when it does a regular expression search.

When you tell Epsilon to perform a forward regex search, it looks forward through the buffer for the
first occurrence in the buffer of a string contained in the generated set. If no such string exists in the buffer,
the search fails.

There may exist several strings in the buffer that match a string in the generated set. Which one
qualifies as the first one? By default, Epsilon picks the string in the buffer that begins before any of the
others. If there exist two or more matches in the buffer that begin at the same place, Epsilon by default picks
the longest one. We call this a first-beginning, longest match. For example, suppose you position point at the
beginning of the following line,

When to the sessions of sweet silent thought

then do a regex search for the pattern s [a-z] *. That pattern describes the set of strings that start with ‘s’,
followed by zero or more letters. We can find quite a few strings on this line that match that description.
Among them:

When to the sessions of sweet silent thought
When to the sessions of sweet silent thought
When to the sessions of sweet silent thought
When to the sessions of sweet silent thought
When to the sessions of sweet silent thought
When to the sessions of sweet silent thought

Here, the underlined sections indicate portions of the buffer that match the description “s followed by a
sequence of letters”. We could identify 31 different occurrences of such strings on this line. Epsilon picks a
match that begins first, and among those, a match that has maximum length. In our example, then, Epsilon
would pick the following match:

When to the sessions of sweet silent thought

4.3. Changing Text 69

since it begins as soon as possible, and goes on for as long as possible. The search would position point after
the final ‘s’ in ‘sessions’.

In addition to the default first-beginning, longest match searching, Epsilon provides three other regex
search modes. You can specify first-beginning or first-ending searches. For each of these, you can specify
shortest or longest match matches. Suppose, with point positioned at the beginning of the following line

I summon up remembrance of things past,

you did a regex search with the patternm. *c | I.*t. Depending on which regex mode you chose, you would
get one of the four following matches:

I summon up remembrance of things past, (first-ending shortest)
I summon up remembrance of things past, (first-ending longest)
I summon up remembrance of things past, (first-beginning shortest)
I summon up remembrance of things past, (first-beginning longest)

By default, Epsilon uses first-beginning, longest matching. You can include directives in the pattern
itself to tell Epsilon to use one of the other techniques. If you include the directive <Min> anywhere in the
pattern, Epsilon will use shortest-matching instead of longest-matching. Putting <FirstEnd> selects
first-ending instead of first-beginning. You can also put <Max> for longest-matching, and <FirstBegin>
for first-beginning. These last two might come in handy if you’ve changed Epsilon’s default regex mode.
The sequences <FE> and <FB> provide shorthand equivalents for <FirstEnd> and <FirstBegin>,
respectively. As an example, you could use the following patterns to select each of the matches listed in the
previous example:

<FE><Min>m.*c|I.*t (first-ending shortest)
<FE><Max>m.*c|I.*t or <FE>m.*c|I.*t (first-ending longest)
<FB><Min>m.*c|I.*t or <Min>m.*c|I.*t (first-beginning shortest)
<FB><Max>m.*c|I.*t or m.*c|I.*xt (first-beginning longest)

You can change Epsilon’s default regex searching mode. To make Epsilon use, by default, first-ending
searches, set the variable regex-shortest to a nonzero value. To specify first-ending searches, set the
variable regex-first-end to a nonzero value. (Examples of regular expression searching in this
documentation assume the default settings.)

When Epsilon finds a regex match, it sets point to the end of the match. It also sets the variables
matchstart and matchend to the beginning and end, respectively, of the match. You can change what
Epsilon considers the end of the match using the ‘!’ directive. For example, if you searched for ‘I
s!ought’ in the following line, Epsilon would match the underlined section:

I sigh the lack of many a thing I sought,

Without the °!” directive, the match would consist of the letters “I sought”, but because of the ‘!’ directive,
the match consists of only the indicated section of the line. Notice that the first three characters of the line
also consist of ‘I's’, but Epsilon does not count that as a match. There must first exist a complete match in
the buffer. If so, Epsilon will then set point and matchend according to any ‘!’ directive.

OVERGENERATING REGEX SETS.

You can use Epsilon’s regex search modes to simplify patterns that you write. You can sometimes write
a pattern that includes more strings than you really want, and rely on a regex search mode to cut out strings
that you don’t want.

70 Chapter 4. Commands by Topic

For example, recall the earlier example of /%* (. |<Newline>)*%*/. This pattern generates the set of
all strings that begin with /* and end with */. This set includes all the C-language comments, but it includes
some additional strings as well. It includes, for example, the following illegal C comment:

/* inside /* still inside */ outside */

In C, a comment begins with /* and ends with the very next occurrence of */. You can effectively get
that by modifying the above pattern to specify a first-ending, longest match, with
<FE><Max>/%* (. | <Newline>) *J*/. It would match:

/* inside /* still inside */ outside */

In this example, you could have written a more complicated regular expression that generated precisely
the set of legal C comments, but this pattern proves easier to write.

Regular Expression Assertions

You can force Epsilon to reject any potential match that does not line up appropriately with a line boundary,
by using the ‘~” and ‘$’ assertions. A ‘"’ assertion specifies a beginning-of-line match, and a ‘$’ assertion
specifies an end-of-line match. For example, if you search for “new|waste in the following line, it would
match the indicated section:

And with old woes new wail my dear times’s waste;

Even though the word ‘new’ occurs before ‘waste’, it does not appear at the beginning of the line, so Epsilon
rejects it.

Other assertions use Epsilon’s angle-bracket syntax. Like the assertions ~ and $, these don’t match any
specific characters, but a potential match will be rejected if the assertion isn’t true at that point in the pattern.

Assertion Meaning
- At the start of a line.
3 At the end of a line.

<bob> or <bof> | At the start of the buffer.
<eob> or <eof> | At the end of the buffer.

For example, searching for <bob>sometext<eob> won’t succeed unless the buffer contains only the
eight character string sometext.

You can create new assertions from character classes specified with the angle bracket syntax by adding
[,] or / at the start of the pattern.

Assertion | Meaning

<[class> | The next character matches class, the previous one does not.
<Jclass> | The previous character matches class, the next one does not.
</class> | Either of the above.

The class in the above syntax is a |-separated or &-separated list of one or more single characters,
character names like Space or Tab, character numbers like #32 or #9, ranges of any of these, character class
names like Word or Digit, or Unicode property specifications. See page 66 for details on character classes.

For example, </word> matches at a word boundary, and <] word> matches at the end of a word. The
pattern <] 0-9 | a-f> matches at the end of a run of hexadecimal digits. The pattern

4.3. Changing Text 71

(cat| [0-9])</digit>(dog| [0-9]) matches cat3 or 4dog, but not catdog or 42. The pattern
<[p:cyrillic> matches at the start of a run of Cyrillic characters.

COLOR CLASS ASSERTIONS.

Another type of assertion matches based on the next character’s color class for syntax highlighting.
<“c:*comment>printf finds uses of printf that aren’t commented out. <[c:perl-string>" finds "
characters that start a string in Perl mode, ignoring those that end it, or appear quoted inside it, or in
comments or other places.

The text after the c: is a simple filename-style pattern that will be matched against the name of the
color class: * matches zero or more characters, 7 matches any single character, and simple ranges with []
are allowed. A character with no syntax highlighting applied will match the name “none”. This type of
assertion may start with ~ to invert the matching rules, or with /, [or] to match color boundaries.

To apply more than one assertion to a character, put them in sequence.
<“c:perl-string><~c:*comment>printf finds instances of printf that are in neither Perl strings nor
comments.

You can use the set-color command to see the color class names Epsilon uses.

When you combine assertions with operators * or +, you must use parentheses to specify that the
assertion applies to each character. (<" c:*-comment><any>)+ matches a run of non-comment characters.
Without the parentheses the assertion only applies to the first character of the run.

In extension language code, use the do_color_searching() subroutine if your regular expression
might include syntax highlighting assertions, which ensures the buffer’s syntax highlighting is up to date.

Regular Expression Commands

You can invoke a forward regex search with the Ctrl-Alt-S key, which runs the command regex-search. The
Ctrl-Alt-R key invokes a reverse incremental search. You can also enter regular expression mode from any
search prompt by typing Ctrl-T to that prompt. For example, if you press Ctrl-S to invoke
incremental-search, pressing Ctrl-T causes it to enter regular expression mode. See page 43 for a description
of the searching commands.

The key Alt-* runs the command regex-replace. This command works like the command query-replace,
but interprets its search string as a regular expression.

In the replacement text of a regex replace, the # character followed by a digit » has a special meaning in
the replacement text. Epsilon finds the nth parenthesized expression in the pattern, counting left parentheses
from 1. It then substitutes the match of this subpattern for the #n in the replacement text. For example,
replacing

([a-zA-Z0-9_1+) = ([a-zA-Z0-9_1+)
with

#2 = #1
changes

variable = value;
to

value := variable;

72 Chapter 4. Commands by Topic

If #0 appears in the replacement text, Epsilon substitutes the entire match for the search string. To
include the actual character # in a replacement text, use ##. In a search pattern, you can follow the open
parenthesis with 7: to tell Epsilon not to count it for replacement purposes; that pair of parentheses will
only be used for grouping.

The replacement text can use the syntax #U to force the rest of the replacement to uppercase (including
text substituted from the match using #1 syntax). Using #L or #C forces the remaining text to lowercase, or
capitalizes it, respectively. Using #E marks the end of such case modifications; the following replacement
text will be substituted as-is. For instance, searching for “(<word>+) by (<word>+)” and replacing it
with “#L#2#E By #U#1” will change the match “Two by Four” into “four By TW0”.

When the search string consists of multiple words of literal text separated by the | character, you can
use #S in the replacement text to swap them. For instance, if you search for dog| cat and replace it with #S,
Epsilon replaces instances of dog with cat, and instances of cat with dog. If you have more than two
choices, each choice will be replaced by the next choice in the list.

When you don’t use the above syntax, replacing preserves the case of each match according to specific
rules. See the replace-by-case variable for details.

Characters other than # in the replacement text have no special meaning. To enter special characters,
type a Ctrl-Q before each. Type Ctrl-Q Ctrl-J to include a (Newline) character in the replacement text. Or
specific characters in the replacement text by name, using the syntax #<Newline>, or by number, such as
#<#0x221a> for the Unicode square root character.

Summary: Ctrl-Alt-S regex-search
Curl-Alt-R reverse-regex-search
Alt-* regex-replace

4.3.8 Rearranging
Sorting

Epsilon provides several commands to sort buffers, or parts of buffers.

The sort-buffer command lets you sort the lines of the current buffer. The command asks for the name
of a buffer in which to place the sorted output. The sort-region command sorts the part of the current buffer
between point and mark, in place. The commands reverse-sort-buffer and reverse-sort-region operate like
the above commands, but reverse the sorting order.

By default, all the sorting commands sort the lines by considering all the characters in the line. If you
prefix a numeric argument of n to any of these commands, they will compare lines starting at column n.

When comparing lines of text during sorting, Epsilon normally folds lower case letters to upper case
before comparison, if the case-fold variable has a nonzero value. If the case-fold variable has a value of
0, Epsilon compares characters as-is. However, setting the buffer-specific sort-case-fold variable to O or
1 overrides the case-fold variable, for sorting purposes. By default, sort-case-fold has a value of 2,
which means to defer to case-fold.

Summary: sort-buffer
sort-region
reverse-sort-buffer
reverse-sort-region

4.3. Changing Text 73

Transposing

Epsilon has commands to transpose characters, words, and lines. To transpose the words before and after
point, use the Alt-T command. This command leaves undisturbed any non-word characters between the
words. Point moves between the words. The Ctrl-X Ctrl-T command transposes the current and previous
lines and moves point between them.

The Ctrl-T command normally transposes the characters before and after point. However, at the start of
a line it transposes the first two characters on the line, and at the end of a line it transposes the last two. On a
line with one or no characters, it does nothing.

Summary: Ctrl-T transpose-characters
Alt-T transpose-words
Ctrl-X Ctrl-T transpose-lines

Formatting Text

Epsilon has some commands that make typing manuscript text easier.

You can change the right margin, or fill column, using the Ctrl-X F command. By default, it has a value
of 70. With a numeric argument, the command sets the fill column to that column number. Otherwise, this
command tells you the current value of the fill column and asks you for a new value. If you don’t provide a
new value but instead press the (Enter) key, Epsilon will use the value of point’s current column. For
example, you can set the fill column to column 55 by typing Ctrl-U 55 Ctrl-X F. Alternatively, you can set
the fill column to point’s column by typing Ctrl-X F (Enter). The buffer-specific variable margin-right
stores the value of the fill column. To set the default value for new buffers you create, use the set-variable
command on F8 to set the default value of the margin-right variable. (See the c-fill-column variable
for the C mode equivalent.) A file’s contents can specify a particular fill column; see page 120.

In auto fill mode, you don’t have to worry about typing (Enter)’s to go to the next line. Whenever a line
gets too long, Epsilon breaks the line at the appropriate place if needed. The auto-fill-mode command
enables or disables auto filling (word wrap) for the current buffer. With a numeric argument of zero, it turns
auto filling off; with a nonzero numeric argument, it turns auto filling on. With no numeric argument, it
toggles auto filling. During auto fill mode, Epsilon shows the word “Fill” in the mode line. The
buffer-specific variable fill-mode controls filling. If it has a nonzero value, filling occurs. To make Epsilon
always use auto fill mode, you can use the set-variable command to set the default value of £ill-mode.

In some language modes, Epsilon uses a special version of auto-fill mode that typically only fills text in
certain types of comments. See page 98 for details.

Epsilon normally indents new lines it inserts via auto fill mode so they match the previous line. The
buffer-specific variable auto-fill-indents controls whether or not Epsilon does this. Epsilon indents
these new lines only if auto-fill-indents has a nonzero value. Set the variable to 0 if you don’t want
this behavior.

During auto filling, the normal-character command first checks to see if the line extends past the fill
column. If so, the extra words automatically move down to the next line.

The (Enter) key runs the command enter-key, which behaves like normal-character, but inserts a
newline instead of the character that invoked it. Epsilon binds this command to the (Enter) key, because
Epsilon uses the convention that Ctrl-J’s separate lines, but the keyboard has the (Enter) key yield a Ctrl-M.
In overwrite mode, the (Enter) key simply moves to the beginning of the next line.

The Alt-Q command fills the current paragraph. The command fills each line by moving words between
lines as necessary, so the lines but the last become as long as possible without extending past the fill column.

74 Chapter 4. Commands by Topic

If the screen shows a highlighted region, the command fills all paragraphs in the region. The fill-region
command fills all paragraphs in the region between point and mark, whether or not the region is highlighted.

If you give a numeric prefix argument of five or less to the above filling commands, they unwrap lines in
a paragraph, removing all line breaks. Alt-2 Alt-Q is one quick way to unwrap the current paragraph. With a
numeric argument greater than 5, the paragraph is filled using that value as a temporary right margin. (Note
that C mode places a different fill command on Alt-Q, and it interprets an argument to mean “fill using the
current column as a right margin”.)

Alt-Shift-Q runs the prefix-fill-paragraph command. It fills the current paragraph while preserving any
run of spaces, punctuation, and other non-alphanumeric characters that appears before each of the lines in
the paragraph. Highlight a region first and it will fill all the paragraphs within in this manner. With a
numeric argument, it fills the paragraph using the current column as the right margin, instead of the
margin-right variable.

The fill-indented-paragraph command is similar; it fills the current paragraph as above, but tries to
preserve only indentation before each line of the paragraph. It’s better than prefix-fill-paragraph when the
paragraph to be filled contains punctuation characters and similar that should be filled as part of the
paragraph, not considered part of the prefix.

The mail-fill-paragraph command on Ctrl-C Alt-Q is similar to prefix-fill-paragraph, but specialized for
the quoting rules of email that put > or # before each line. It preserves email quoting characters at the starts
of lines, treating other characters as part of the paragraph.

Press Ctrl-C > to add email-style quoting to the current paragraph (or highlighted region). Press Ctrl-C
< to remove such quoting.

These mail-formatting commands use the mail-quote-pattern, mail-quote-skip, and
mail-quote-text variables.

Summary: Ctl-X F set-fill-column

Alt-q fill-paragraph

Alt-Shift-Q prefix-fill-paragraph

Ctrl-C Alt-Q mail-fill-paragraph

Ctrl-C > mail-quote-region

Ctrl-C < mail-unquote
fill-indented-paragraph
fill-region
auto-fill-mode

(Enter) enter-key

4.3.9 Indenting Commands

Epsilon can help with indenting your program or other text. The (Tab) key runs the indent-previous
command, which makes the current line start at the same column as the previous non-blank line.
Specifically, if you invoke this command with point in or adjacent to a line’s indentation, indent-previous
replaces that indentation with the indentation of the previous non-blank line. If point’s indentation exceeds
that of the previous non-blank line, or if you invoke this command with point outside of the line’s
indentation, this command simply inserts a (Tab). See page 104 for information on changing the width of a
tab.

Epsilon can automatically indent for you when you press (Enter). Setting the buffer-specific variable
auto-indent nonzero makes Epsilon do this. The way Epsilon indents depends on the current mode. For

4.3. Changing Text 75

example, C mode knows how to indent for C programs. In Epsilon’s default mode, fundamental mode,
Epsilon indents like indent-previous if you set auto-indent nonzero. (Auto-indenting removes trailing
spaces and tabs t0o.)

In some modes Epsilon not only indents the newly inserted line, but also reindents the existing line.
Variables named after their modes, like c-reindent-previous-1line, control this. The
default-reindent-previous-1line variable controls this for modes that don’t have their own variable.

When Epsilon automatically inserts new lines for you in auto fill mode, it looks at a different variable to
determine whether to indent these new lines. Epsilon indents in this case only if the buffer-specific variable
auto-fill-indents has a nonzero value.

The Alt-M key moves point to the beginning of the text on the current line, just past the indentation.

The indent-under command functions like indent-previous, but each time you invoke it, it indents more,
to align with the next word in the line above. In detail, it goes to the same column in the previous non-blank
line, and looks to the right for the end of the next region of spaces and tabs. It indents the rest of the current
line to that column after removing spaces and tabs from around point. With a highlighted region, it indents
all lines in the region to that same column.

With a numeric prefix argument, indent-under goes to a different run of non-spaces. For instance, with
an argument of 3, it goes to the previous line and finds the third word after the original column, then aligns
the original line there.

The indent-rigidly command, bound to Ctrl-X Ctrl-I (or Ctrl-X (Tab)), changes the indentation of each
line between point and mark by a fixed amount provided as a numeric argument. For instance, Ctrl-U 8
Ctrl-X Ctrl-I moves all the lines to the right by eight spaces. With no numeric argument, lines move to the
right by the buffer’s tab size (default 8; see page 104), and with a negative numeric argument, lines move to
the left. So, for example, Ctrl-U -1000 Ctrl-X Ctrl-I should remove all the indentation from the lines
between point and mark.

If you highlight a region before pressing (Tab) (or any key that runs one of the commands
indent-previous or do-c-indent), Epsilon indents all lines in the region by one tab stop, by calling the
indent-rigidly command. You can provide a numeric argument to specify how much indentation you want.

The Shift-(Tab) key moves the cursor back to the previous tab stop. But if you highlight a region before
pressing it, it will remove one tab stop’s worth of indentation. (See the resize-rectangle-on-tab
variable if you want these keys to instead change the region’s shape without moving text.)

The indent-region command, bound to Ctrl-Alt-\, works similarly. It goes to the start of each line
between point and mark and invokes the command bound to (Tab). If the resulting line then contains only
spaces and tabs, Epsilon removes them.

You can set up Epsilon to automatically reindent text when you yank it. Epsilon will indent like
indent-region. By default, Epsilon does this only for C mode (see the reindent-after-c-yank variable).

To determine whether to reindent yanked text, the yank command first looks for a variable whose name
is derived from the buffer’s mode as it appears in the mode line: reindent-after-c-yank for C mode
buffers, reindent-after-html-yank for HTML mode buffers, and so forth. If there’s no variable by that
name, Epsilon uses the reindent-after-yank variable instead. Instead of a variable, you can write an
EEL function with the same name; Epsilon will call it and use its return value. See the description of
reindent-after-yank for details on what different values do.

The Alt-S command horizontally centers the current line between the first column and the fill column
by padding the left with spaces and tabs as necessary. Before centering the line, the command removes
spaces and tabs from the beginning and end of the line.

With any of these commands, Epsilon indents by inserting as many tabs as possible without going past
the desired column, and then inserting spaces as necessary to reach the column. You can set the size of a tab

76 Chapter 4. Commands by Topic

by setting the tab-size variable. Set the soft-tab-size variable if you want Epsilon to use one setting
for displaying existing tab characters, and a different one for indenting.

If you prefer, you can make Epsilon indent using only spaces. The buffer-specific variable
indent-with-tabs controls this behavior. Set it to 0 using set-variable to make Epsilon use only spaces
when inserting indentation.

If you want (Tab) to simply indent to the next tab stop, you can bind the indent-to-tab-stop command to
it. To disable smart indenting in a particular language mode, you can bind this command to (Tab) only in
that mode.

The untabify-region command on Ctrl-X Alt-I changes all tab characters between point and mark to the
number of spaces necessary to make the buffer look the same. The tabify-region command on Ctrl-X
Alt-(Tab) does the reverse. It looks at all runs of spaces and tabs, and replaces each with tabs and spaces to
occupy the same number of columns. The commands tabify-buffer and untabify-buffer are similar, but operate
on the entire buffer, instead of just the region.

Summary: Alt-M to-indentation
(Tab) indent-previous
Shift-(Tab) back-to-tab-stop
Ctrl-Alt-I indent-under
Ctrl-X (Tab) indent-rigidly
Ctrl-Alt-\ indent-region
Alt-S center-line
Ctrl-X Alt-(Tab) tabify-region
Cul-X Alt-1 untabify-region
tabify-buffer
untabify-buffer
indent-to-tab-stop
4.3.10 Aligning

The align-region command on Ctrl-C Ctrl-A aligns elements on lines within the current region. It changes
the spacing just before each element, so it starts at the same column on every line where it occurs.

[T

It uses alignment rules specialized for the current mode. By default, it aligns the first character on

each line, and any comments on the lines.

For C mode, Epsilon additionally aligns the names of variables being defined (in simple definitions), the
definitions of macros in #define lines, and the backslash character at the end of preprocessor commands. It
can change

int hour = 3; // The hour.

short int minute = 22; // The minute.

int second = 14; // The second.

#define GET_HOUR() hour // Get the hour.
#define GET_MINUTE() minute // Get the minute.
#define GET_SECOND() second // Get the second.

into

4.3. Changing Text 77

int hour = 3; // The hour.
short int minute = 22; // The minute.
int second = 14; // The second.

#define GET_HOUR() hour // Get the hour.
#define GET_MINUTE() minute // Get the minute.
#define GET_SECOND() second // Get the second.

You can disable individual alignment rules by setting the align-region-rules variable, or increase
the minimum spacing used by all automatic rules by setting the align-region-extra-space variable.

The command can also perform alignments specified manually. Run it with a numeric prefix argument,
and it will prompt for a regular expression pattern that defines the alignment rule. It must consist of two
parenthesized patterns, such that in a regular expression replacement, #1 and #2 would substitute their text.
Alignment will alter the spacing between these two elements. Manual alignment will also prompt for the
amount of additional spacing to be added between the two elements.

To use the built-in mode-based rules, but add extra space, run align-region with a numeric prefix, but
enter nothing for the search pattern. The command will prompt for the amount of additional space and apply
it using the mode’s default alignment rules, as if you had temporarily modified the
align-region-extra-space variable.

Summary: Cul-C Cul-A align-region

4.3.11 Automatically Generated Text

The copy-file-name command on Ctrl-C Alt-n is a convenient way to put the current buffer’s filename onto
the clipboard. In a dired buffer, it copies the current line’s absolute pathname.

The similar copy-include-file-name on Ctrl-C Alt-i formats the current file’s name as an #include
command for C mode buffers, and similarly for other languages. It looks for a variable with a name of the
form copy-include-file-name-mode, where mode is the current mode name. The variable holds a file
name template (see page 115) which is used to format the current file’s name. If there’s a function by that
name, not a variable, Epsilon simply calls it. The function can call the copy_line_to_clipboard()
subroutine after preparing a suitable line.

The insert-date command on Ctrl-C Alt-d inserts the current time and/or date, according to the format
specified by the date-format variable.

Summary: Ctrl-C Alt-n copy-file-name
Ctrl-C Alt-i copy-include-file-name
Curl-C Alt-d insert-date

4.3.12 Spell Checking

The Spell minor mode makes Epsilon highlight misspelled words as you edit.

First configure spell checking by running the spell-configure command. The first time you run it, it will
download and install a set of dictionary files into the “spell” subdirectory of your customization directory.
(See http://www.lugaru.com/spell.html if you need to download it manually.) Then it will ask your region

78 Chapter 4. Commands by Topic

(American, Canadian, British, or British with -ize spellings preferred) and other questions like dictionary
size. (A larger dictionary means rarer words won’t be marked as potential misspellings, but it will miss those
misspellings that happen to result in rare words.) To start, just choose default options for each question.

Use the spell-mode command to make Epsilon highlight misspelled words in the current mode. The
command toggles highlighting; a numeric prefix argument forces it on (if nonzero) or off (if zero). “Sp” in
the mode line indicates Spell minor mode is on. Use the buffer-spell-mode command instead if you want
Epsilon to only highlight misspelled words in the current buffer.

Epsilon remembers whether you want spell checking in a particular mode using a variable like
html-spell-options, whose name is derived from the mode name. If a mode has no associated variable,
Epsilon uses the default-spell-options variable. Each variable contains bits to further customize
spelling rules for that mode. The 0x1 bit says whether misspelled words should be highlighted at all;
spell-mode toggles it. The following table shows the meaning of the other bits in each variable.

Bit Meaning

0x1 Highlight misspelled words.

0x2 Skip words containing an underscore.

0x4 Skip MixedCaseWords (those with internal capitalization).
0x8 Skip uppercase words (those with no lowercase letters).

0x10 Skip words following a digit, like 14th.

0x20 Skip words before a digit, like gr8.

0x200 | Don’tremove 's when checking words.

0x1000 | Provide faster but less accurate built-in suggestions.
0x2000 | Don’t copy the case of the original in built-in suggestions.
0x4000 | Add globally ignored words to spell helper’s list.

The spell-correct command can suggest replacements for a misspelled word. It can also record a word
in an ignore list so Epsilon no longer highlights it as a misspelling. Epsilon maintains a global ignore list
named ignore.1lst in your customizations directory. That directory also contains its main word list
dictionary espell.1lst (which is ordered so that more common words appear closer to the top of the file)
and espell.srt, a (case-sensitively) sorted version of espell.lst.

Epsilon also checks directory-specific, file-specific, and mode-specific ignore lists. When checking a
file named file.html, for example, Epsilon looks for an ignore list file named .file.html.espellin
that same directory, and a directory-specific ignore list file in that directory named .directory.espell. A
mode-specific ignore list file is named ignore.modename.mode.lst, where modename is the current mode
name, and appears in your customization directory.

All these files contain one word per line. Epsilon automatically sorts ignore list files when it uses them.
(Epsilon can optionally use extension-specific ignore lists too. By default this is disabled for simplicity. See
the global-spell-options variable.)

The spell-buffer-or-region command performs spell checking for the current buffer, going to each
misspelled word in turn and asking if you want to correct it or ignore it. With a highlighted region it checks
just that region.

The spell-grep command writes a copy of all lines with spelling errors to the grep buffer, where you can
use the usual grep commands to navigate among them. See page 46 for details.

MAKING SUGGESTIONS

The spell-correct command presents a list of suggestions. Epsilon can generate these in several different
ways. The default method uses the installed dictionary files. A faster, less accurate, but still self-contained
method is available by setting a bit in the current -spell-options variable.

4.3. Changing Text 79

Epsilon can also run an external program to provide suggestions; this is generally very fast and
produces the best suggestions. The spell-configure command configures this. It sets up Epsilon to use aspell
or the older ispell, two free command line spelling programs often installed on Unix systems. It can also set
up Epsilon to use MicroSpell, a commercial spell checking program for Windows systems available from
http://www.microspell.com, by installing a helper program mspellcmd.exe into its directory. In Epsilon for
Mac OS X, it can also use the Mac’s native spelling engine, though this is not available when you run
Epsilon for Mac OS X over a network connection from another computer.

CUSTOMIZING SPELL CHECKING

Epsilon looks for words to be checked using a regular expression pattern. In modes without syntax
highlighting, it uses the pattern in the default-spell-word-pattern variable. In modes with syntax
highlighting, it uses default-color-spell-word-pattern.

This latter pattern makes Epsilon ignore words based on their syntax highlighting color class, so that it
skips over language keywords, variable names, and so forth. It checks words only if the mode colors them
using a color class whose name ends in —~text, —comment, or -string. It uses a color class assertion (see
page 71) to do this.

You can define a replacement spell check pattern for any mode by creating a variable whose name is the
mode name followed by -spell-word-pattern. Then Epsilon will use that variable instead of one of the
default variables. For instance, if you want XML mode to check attributes as well as text but not comments,
you could define a variable xm1-spell-word-pattern and copy its value from the
default-color-spell-word-pattern variable, changing the color class assertion to
<c:*-text|*-attributes>.

A mode can make the speller ignore words based on adjacent text, in addition to using color class
assertions. Create a variable whose name is the mode’s name followed by
-spell-ignore-pattern-prefix. If it exists, and the regular expression pattern it contains matches the
text just before a word, the speller will skip it. For instance, if in Sample mode a # at the start of a line
indicates a comment, define a variable sample-spell-ignore-pattern-prefixand setit to ~#.*.
Similarly, a variable ending in -spell-ignore-pattern-suffix that matches just after a word will make
the speller ignore the word.

A mode can define an alternative set of dictionaries and ignore files by setting the buffer-specific
spell_language_prefix variable. Set it to a suffix like “~fr” and Epsilon will look for alternative files,
which the mode must supply, ending with that suffix.

Summary: spell-mode
buffer-spell-mode
spell-configure
spell-buffer-or-region
spell-grep

Ctrl-C Ctrl-O spell-correct

4.3.13 Hex Mode
The hex-mode command creates a second buffer that shows a hex listing of the original buffer. You can edit

this buffer, as explained below. Press q when you’re done, and Epsilon will return to the original buffer,
offering to apply your changes.

A hex digit (0-9, a-f) in the left-hand column area moves in the hex listing to the new location.

80 Chapter 4. Commands by Topic

A hex digit (0-9, a-f) elsewhere in the hex listing modifies the listing.

q quits hex mode, removing the hex mode buffer and returning to the original buffer. Epsilon will first offer
to apply your editing changes to the original buffer.

(Tab) moves between the columns of the hex listing.

s or r searches by hex bytes. Type a series of hex bytes, like Oa 0d 65, and Epsilon will search for them. S
searches forward, R in reverse.

Ctrl-S and Ctrl-R temporarily toggle to the original buffer so you can search for literal text. When the
search ends, they move to the corresponding place in the hex listing.

t toggles between the original buffer and the hex mode buffer, going to the corresponding position.

prompts for a new character value and overwrites the current character with it. You can use any of these
formats: A’, 65, 0x41 (hex), Ob1100101 (binary), 00145 (octal).

n or p move to the next or previous line.
g prompts for an offset in hexadecimal, then goes there.

o toggles the hex overwrite submode, which changes how Epsilon interprets keys you type in the rightmost
column of the hex listing. In overwrite mode, printable characters you type in the rightmost column
overwrite the text there, instead of acting as hex digits or commands.

For instance, typing “3as” in the last column while in overwrite mode replaces the next three
characters with the characters 3, a, and s. Outside overwrite mode, they replace the current character
with one whose hex code is 3a, and then begin a search.

To use hex mode commands from overwrite mode, prefix them with a Ctrl-C character, such as Ctrl-C
o to exit overwrite mode. Or move out of the rightmost column with (Tab) or other movement keys.

? shows help on hex mode.

Summary: hex-mode

4.4 Language Modes

When you use the find-file command to read in a file, Epsilon looks at the file’s extension to see if it has a
mode appropriate for editing that type of file. For example, when you read a .h file, Epsilon goes into C
mode. Specifically, whenever you use find-file and give it a file name “foo.ext”, after find-file reads in the file,
it executes a command named “suffix_ext”, if such a command exists. The find-file command constructs a
subroutine name from the file extension to allow you to customize what happens when you begin editing a
file with that extension.

For example, if you want to enter C mode automatically whenever you use find-file on a “.x” file, you
simply create a command (a keyboard macro would do) called “suffix_x", and have that command call
c-mode, or even better, an existing suffix_ function. One way is to add a line like this to your einit.ecm file
(see page 154):

(define-macro "suffix-x" "<!suffix-c>")

For another example, you can easily stop Epsilon from automatically entering C mode on a “.h” file by
using the delete-name command to delete the subroutine “suffix-h”. (You can interchange the - and _

4.4. Language Modes 81

characters in Epsilon command names.) Or define a suffix-h macro so it calls the fundamental-mode
command in your einit.ecm file, as above.

Epsilon also has various features that are useful in many different language modes. See the description
of tagging on page 48 and the section starting on page 94.

In addition to the language-specific modes described in the following sections, Epsilon includes modes
that support various Epsilon features. For example, the buffer listing generated by the bufed command on
Ctrl-X Ctrl-B is actually in an Epsilon buffer, and that buffer is in Bufed mode. Press F1 m to display help
on the current mode.

Many language modes will call a hook function if you’ve defined one. For example, C mode tries to call
a function named c_mode_hook (). A hook function is a good place to customize a mode by setting
buffer-specific variables. It can be a keyboard macro or a function written in EEL, and it will be called
whenever Epsilon loads a file that should be in the specified mode.

To customize a mode’s key bindings, see the example for C mode on page 84.

The fundamental-mode command removes changes to key bindings made by modes such as C mode,
Dired mode, or Bufed mode. You can configure Epsilon to highlight matching parentheses and other
delimiters in fundamental mode; see the fundamental-auto-show-delim-chars variable.

Also see page 118 to customize the list of file types shown in File/Open and similar dialogs in Epsilon
for Windows.

Summary: fundamental-mode

441 Asm Mode

Epsilon automatically enters Asm mode when you read a file with an extension of .asm, .inc, .al, .mac, .ah,
or .asi. In Asm mode, Epsilon does appropriate syntax highlighting, tagging, and commenting. The
compile-buffer command uses the compile-asm-cmd variable in this mode.

Summary: asm-mode

4.4.2 Batch Mode

Epsilon automatically enters Batch mode when you read a file with an extension of .bat, .cmd, or .btm. In
Batch mode, Epsilon does appropriate syntax highlighting, and provides delimiter highlighting using the
auto-show-batch-delimiters and batch-auto-show-delim-chars variables.

Summary: batch-mode

443 C Mode

The c-mode command puts the current buffer in C mode. C mode provides smart indenting for programs
written in C, C++, C#, Java, Epsilon’s extension language EEL, Objective-C, and other C-like languages.
Pressing (Enter) or (Tab) examines previous lines to find the correct indentation. Epsilon supports several
common styles of indentation, controlled by some extension language variables.

The Closeback variable controls the position of the closing brace:

82 Chapter 4. Commands by Topic

Closeback = 0; Closeback = 1;
if (foo){ if (foo){
bar() ; bar();
baz(); baz();
} }

By placing the opening brace on the following line, you may also use these styles:

Closeback = 0; Closeback = 1;
if (foo) if (foo)
{ {
bar(); bar();
baz(); baz();
T ¥

Closeback by default has a value of 1.

Use the Topindent variable to control the indentation of top-level statements in a function:

Topindent = 0; Topindent = I;

foo() foo()

{ {

if (bar) if (bar)
baz(); baz();

} }

Topindent by default has a value of 1.

The Matchdelim variable controls whether typing),], or } displays the corresponding (, [, or { using
the show-matching-delimiter command. The Matchdelim variable normally has a value of 1, which means
that Epsilon shows matching delimiters. You can change these variables as described on page 151.

In C mode, the (Tab) key reindents the current line if pressed with point in the current line’s indentation.
(Tab) just inserts a tab if pressed with point somewhere else, or if pressed two or more times successively. If
you set the variable c-tab-always-indentsto 1, then the (Tab) key will reindent the current line,
regardless of your position on the line. If you press it again, it will insert another tab. The (Enter) key
indents the line it inserts, as well as the current line (but see the c-reindent-previous-1line variable).

When you yank text into a buffer in C mode, Epsilon automatically reindents it. This is similar to the
“smart paste” feature in some other editors. You can set the variable reindent-after-c-yank to zero to
disable this behavior. Epsilon doesn’t normally reindent comments when yanking; set the
reindent-c-comments and reindent-one-line-c-comments variables to change that. Also see the
reindent-c-preprocessor-lines variable.

By default, Epsilon uses the value of the buffer-specific tab-size variable to determine how far to
indent. For example, if the tab size has a value of 5, Epsilon will indent the line following an if statement
five additional columns.

If you want the width of a tab character in C mode buffers to be different than in other buffers, set the
variable c-tab-override to the desired value. C mode will change the buffer’s tab size to the specified
number of columns. The eel-tab-override variable does the same in EEL buffers (which use a variation
of C mode). Also see the description of file variables on page 120 for a way in which individual files can
indicate they should use a particular tab size.

4.4. Language Modes 83

If you want to use one value for the tab size and a different one for C indentation, set the buffer-specific
c-indent variable to the desired indentation using the set-variable command. When c-indent has a value
of zero, as it has by default, Epsilon uses the tab-size variable for its indentation. (Actually, the (Tab) key
in C mode doesn’t necessarily insert a tab when you press it two or more times in succession. Instead, it
indents according to c-indent. If the tab size differs from the C indent, it may have to insert spaces to
reach the proper column.)

In Java files, Epsilon uses the similar variable java-indent to set the column width of one level of
indentation.

The c-case-offset variable controls the indentation of case statements. Normally, Epsilon indents
them one level more than their controlling switch statements. Epsilon adds the value of this variable to its
normal indentation, though. If you normally indent by 8 spaces, for example, and want case statements to
line up with their surrounding switch statements, set c-case-offset to —8.

Similarly, the c-access-spec-offset variable controls the indentation of public:, private:,
protected: (and, for C#, internal :) access specifiers.

The c-label-indent variable provides the indentation of lines starting with labels. Normally, Epsilon
moves labels to the left margin.

Epsilon offsets the indentation of a left brace on its own line by the value of the variable
c-brace-offset. For example, with a tab size of eight and default settings for other variables, a
c-brace-offset of 2 produces:

if (a)
{
b(O;
}

The variable c-top-braces controls how much Epsilon indents the braces of the top-level block of a
function. By default, Epsilon puts these braces at the left margin. Epsilon indents pre-ANSI K&R-style
parameter declarations according to the variable c-param-decl. Epsilon indents parts of a top-level
structure or union according to c-top-struct, and indents continuation lines outside of any function body
according to c-top-contin. Continuation lines for classes and functions that use C++ inheritance syntax
may be indented according to c-align-inherit.

Additional C mode indentation variables that may be customized include c-indent-after-extern-c,
c-align-break-with-case, c-indent-after-namespace, and reindent-c-preprocessor-lines.

By default, the C indenter tries to align continuation lines under parentheses and other syntactic items
on prior lines. If Epsilon can’t find anything on prior lines to align under, it indents continuation lines two
levels more than the original line. (With default settings, Epsilon indents unalignable continuation lines 8
positions to the right of the original line.) Epsilon adds the value of the variable c-contin-offset to this
indentation, though. If you want Epsilon to indent unalignable continuation lines ten columns less, set
c-contin-offsetto —10 (it’s 0 by default).

If aligning the continuation line would make it start in a column greater than the value of the variable
c-align-contin-lines (default 48), Epsilon won’t align the continuation line. It will indent by two
levels plus the value of c-contin-offset, as described above. Also see the c-align-extra-space
variable for an adjustment Epsilon makes for continuation lines that would be indented exactly one level.

As a special case, setting the c-align-contin-1lines to zero makes Epsilon never try to align
continuation lines under syntactic features on prior lines. Epsilon will then indent all continuation lines by
one level more than the original line (one extra tab, normally), plus the value of the variable
c-contin-offset.

84 Chapter 4. Commands by Topic

If the continuation line contains only a left parenthesis character (ignoring comments), Epsilon can
align it with the start of the current statement if you set c-align-open-paren nonzero. If the variable is
zero, it’s aligned like other continuation lines.

You can also have Epsilon use less indentation when a line is very wide. The variable
c-align-contin-max-width sets a maximum line width for continuation lines, when nonzero. Set it to
-1 to use the current window’s width.

When a continuation line is wider than that many columns, the c-align-contin-max-offset
variable says what to do about it. If greater than zero, Epsilon indents by that amount past the base line
(similar to how c-contin-offset works). If zero, Epsilon right-aligns the wide line to
c-align-contin-max-width. If negative, it right-aligns but with that amount of extra space.

These “max” variables, unlike c-align-contin-1lines, look at the total width of the line, not just the
width of its indentation.

C mode also provides special indenting logic for various macros used in Microsoft development
environments that function syntactically like braces, such as BEGIN_ADO_BINDING(). See the
use-c-macro-rules variable.

In Objective-C code, Epsilon right-aligns the selectors (argument labels) of multi-line messages,
according to the c-align-selectors variable.

In C mode, you can use the find-linked-file command on Ctrl-X Ctrl-L to read the header file included
with a #include or #import statement on the current line, or use the copy-include-file-name on Ctrl-C Alt-i
in a header file to create a suitable #include statement. See the include-directories variable, and the
mac-framework-dirs variable for includes that depend on Macintosh framework search paths.

DISABLING C MODE INDENTING

If you prefer manual indenting, various aspects of C mode’s automatic indentation can be disabled. If
you don’t want keys like # or : or curly braces to reindent the current line, just bind those keys in C mode to
normal-character. Set reindent-after-c-yank and c-reindent-previous-1line to zero to disable
reindenting when yanking, and keep indenting commands from fixing up earlier lines. If you want the
(Enter) key to go to the next line without indenting, while Ctrl-J still does both, you can define a keyboard
macro for the former key. Similarly, if you want smart indenting from the (Tab) key but a plainer indent
from Ctrl-1, you can define that by binding do-c-indent to the former and one of indent-previous,
indent-under, indent-like-tab, or normal-character to Ctrl-I.

(In a Unix terminal environment, Epsilon can’t distinguish keys like (Enter) and (Tab) from Ctrl-M and
Ctrl-1, respectively, so you’d need to pick different keys.)

Here is an example of the changes to accomplish this.

“c-tab "#": normal-character

“c-tab ")": normal-character

“c-tab ":": normal-character

“c-tab "]": normal-character

“c-tab "{": normal-character

“c-tab "}": normal-character
(set-variable "reindent-after-c-yank" 0)
(set-variable "c-reindent-previous-line" 0)
(define-macro "plain-enter" "C-QC-J")
“c-tab "<EnterKey>": plain-enter

“c-tab "<TabKey>": do-c-indent

“c-tab "C-I": indent-previous

4.4. Language Modes 85

Pick the customizations you want, modify them as appropriate, and copy them to your einit.ecm
customization file (see page 154). Epsilon will begin using the changes the next time it starts up (or use
load-buffer to load them immediately).

A useful technique when customizing language mode bindings like the above is to run the list-all
command, then copy the particular lines you want to change into your einit.ecm file and modify them. See
page 147.

Summary: c-mode
C Mode only: (Tab) do-c-indent
C Mode only: { c-open
C Mode only: } c-close
C Mode only: : c-colon
C Mode only: # c-hash-mark
C Mode only:),] show-matching-delimiter

Other C mode Features

In C mode, the Alt-(Down) and Alt-(Up) keys move to the next or previous #if/#else/#endif preprocessor
line. When starting from such a line, Epsilon finds the next/previous matching one, skipping over inner
nested preprocessor lines. Alt-] and Alt-[do the same. Press Alt-i to display a list of the preprocessor
conditionals that are in effect for the current line.

When the cursor is on a brace, bracket, or parenthesis, Epsilon will try to locate its matching brace,
bracket, or parenthesis, and highlight them both. If the current character has no match, Epsilon will not
highlight it. Set the variable auto-show-c-delimiters to zero to disable this feature.

Pres